
Design Tools Design

A
n
d
r
é

K
n
ö
r
i
g
:

D
e
s
i
g
n

T
o
o
l
s

D
e
s
i
g
n

Master Thesis, FH Potsdam, 2008 André Knörig

How to design tools for designers, and a proposal of
two new tools for the design of physical interactions

Design Tools Design

André Knörig

How to design tools for designers, and a proposal of two
new tools for the design of physical interactions

Title photo by Lynn Irving
http://flickr.com/photos/spiderpops/202001463

supervised by

Boris Müller
Professor of Interface Design
University of Applied Sciences Potsdam

Reto Wettach
Professor of Interface Design
University of Applied Sciences Potsdam

submitted by
André Knörig

to the University of Applied Sciences Potsdam
in partial fulfillment of the requirements for the degree
Master of Design (Interface Design)

August 2008

4 Design Tools Design

5P r e f a c e

Abstract

This thesis investigates the use of tools, specifically software tools, in the
design of user interfaces. Based on an analysis of the design process and
existing tools, it digests a set of guidelines for the creation of such tools.
Two relevant tools for the design of physical interactions are proposed as
a consequence, one for the early stage of sketching, the other for the later
stage of production.

Software tools for design have a long and successful history, with broad
support for nearly every design discipline. This thesis argues that a success-
ful “design tool design” requires a thorough understanding of the process
and activities the designers are involved in. Based on this understanding
and a survey of existing tools for the discipline of interaction design, a set
of guidelines is established. The three main principles of creativity, crafts-
manship, and practicability attempt to harmonize findings from research
and commercial applications.

Finally, this thesis contributes two new tools to the young domain of
physical interaction design. Both fill important gaps in adequate tool sup-
port. Sketchbook provides assistance in the early conceptual and sketch-
ing phases, bringing structure and interactivity to physical sketches. Its
informal approach lets the designer gradually evolve his ideas, to the stage
where they can be directly fed into electronic prototyping toolkits.

Fritzing enables designers to bring their prototypes to a higher level of
fidelity. With little technical knowledge, they can turn their breadboard-
based electronics into professionally produced PCBs and move one step
further to self-production. Fritzing also makes documentation and shar-
ing for the first time feasible for designers, providing a potential creativity
boost to the community.

6 Design Tools Design

7P r e f a c e

Acknowledgments

I would like to express my gratitude to a number of kind people who have
supported and accompanied me through this endeavor:

My supervisors, Prof. Boris Müller and Prof. Reto Wettach, for their wise
critiques and motivating challenges.

My study mates, especially Christian Behrens, Johannes Landstorfer,
and Larissa Pschetz, for their honest words and their shared understand-
ing of the life as a master student.

The Fritzing team, Jonathan Cohen, Zach Eveland, Dirk van Oosterbo-
sch, Omer Yosha, Travis Robertson, and as of late, Brendan Howell, Mari-
ano Crowe, Stefan Hermann and Marcus Paeschke, for their enthusiastic
working attitude and the highly enjoyable atmosphere. And of course the
MWFK Brandenburg for sponsoring this research project.

Also all the participants of the Fritzing workshops for their passionate
discussions and contributions.

Dr. Eva Hornecker and Prof. Frank Heidmann for helpful pointers to rel-
evant research.

Fabian Hemmert, Julia Werner, Hans Kadel, and Dr. Gesche Joost for
the exciting work on the research project that also led to the “Dynamic
Knobs” prototype discussed here.

Finally, my family and Sabrina’s family for their deep and totally uncriti-
cal support.

Sabrina, for being her and being with me.

8 Design Tools Design

9P r e f a c e

Eidesstattliche
Erklärung

Ich erkläre hiermit an Eides Statt, dass ich die vorliegende Arbeit selb-
stständig und ohne Benutzung anderer als der angegebenen Hilfsmittel
angefertigt habe; die aus fremden Quellen direkt oder indirekt übernom-
menen Gedanken sind als solche kenntlich gemacht. Die Arbeit wurde
bisher in gleicher oder ähnlicher Form keiner anderen Prüfungskommis-
sion vorgelegt und auch nicht veröffentlicht.

André Knörig
Berlin, den 1. September 2008

10 Design Tools Design

11T a b l e o f C o n t e n t s

Table of Contents

Abstract.............................. 5

Acknowledgments....................... 7

Eidesstattliche Erklärung............. 9

1 Context............................ 17

1.1 Design Tools...................... 17

1.2 Computer as design tool........... 21

1.3 (Physical) Interaction Design..... 22

1.4 Research questions and goals...... 24

1.5 Outline........................... 24

2 Analysis........................... 27

2.1 Models of the design process...... 27

2.2 Design Activities................. 31

Research...............................31

Abstract...............................31

Envision...............................33

Sketch.................................33

Present................................33

12 Design Tools Design

Select.................................34

Prototype..............................34

Test...................................34

Produce................................35

Document...............................35

2.3 Methods & Techniques.............. 37

2.4 Designing Physical Interactions... 37

2.5 Existing Tools.................... 38

Rapid prototyping for GUIs.............38

Sketchy rendering......................39

Early-stage sketching..................41

Exploring interactivity................41

Production.............................45

Design tools for PUIs..................46

2.6 Gaps.............................. 47

4 Designing Tools.................... 51

3.1 Creativity........................ 51

Exploration and experimentation52

Low threshold, high ceiling, wide walls .53

Informality............................53

Collaboration and community............54

3.2 Craftsmanship..................... 54

Detailed control.......................55

Tool appropriation.....................56

Focus..................................56

Aesthetics.............................57

3.3 Practicality...................... 57

Cost...................................57

Flexibility............................58

Periphery..............................59

3.4 Conclusion........................ 59

13T a b l e o f C o n t e n t s

4 Tool I: Sketchbook................. 61

4.1 The Need.......................... 61

The case of GUI design.................61

Sketching physical interactions........62

Current difficulties...................63

Opportunity............................63

4.2 Basic concept..................... 64

4.3 Elements of Sketchbook............ 65

Collection.............................65

First sketches.........................67

Interaction notation...................68

Context................................70

History................................71

Presentation...........................72

Logic..................................73

5 Tool II: Fritzing.................. 79

5.1 The Need.......................... 79

Current situation......................81

Current problems.......................81

Opportunity............................82

5.2 The Focus......................... 83

Carving out the territory..............83

Refocusing.............................84

Fitting into the landscape.............85

5.3 The Design........................ 86

Low threshold..........................87

High ceiling...........................89

Wide walls.............................90

Exploration and experimentation........90

Informality............................91

Collaboration and community............92

Detailed control.......................92

14 Design Tools Design

Tool appropriation.....................92

Aesthetics.............................93

Flexibility............................93

5.4 Development history............... 94

Agile development......................94

Experts participation..................95

Continuous testing.....................97

Workshops..............................97

Bibliography......................... 99

List of Figures..................... 105

15T a b l e o f C o n t e n t s

16 Design Tools Design

17C o n t e x t

Context

If all you have is a hammer,

everything looks like a nail.

(Folk wisdom)

The computer has become the dominant tool of our times, the jack-of-
all-trades which assists us with any problem. Its power is abstraction, and
the creativity of its users brings us new practical (and unpractical) appli-
cations every day. In his influential essays, the critical computer scientist
Fred Brooks repeatedly reminds his colleagues that they are “toolsmiths”
much rather than scientists (Brooks, 1977 & 1994).

We should therefore expect that by now, fourty years after the invention
of the desktop computer, we are near-optimally supported by computer
tools. In my diploma thesis (Knörig, 2006) I have already shown that exist-
ing tools are still ignoring an essential part of our creativity: The human
body is largely neglected when it comes to interacting with computers. My
belief is that this harms our creativity, especially since the desktop com-
puter has a tendency to absorb our full attention (ibid., p. 36).

This thesis, however, starts by accepting the dominance of the graphi-
cal user interface and will look into the tools that are available there. The
domain however, to which these tools shall be applied, is again bodily. It
is about the design of physical, bodily interactions between human beings
and electronic artefacts. In other words, how can software tools help to
design new interactive hardware?

1.1 Design Tools

Tools have always been a powerful propeller of human evolution. In fact,
until the late eighteenth century, the use of tools was regarded as the main

1

18 Design Tools Design

distinguishing property between humans and animals. This view can no
longer be held and is now more differentiated. Human tool use is in prin-
ciple much more advanced, e.g., we use tools to produce other tools, we
retain them for repeated use, we build tool-sets for special domains and
even specialized workshops (Greenberg, 1993, ch. 1).

Tools are artefacts that are made to extend human abilities. Classically,
tools are pragmatic extensions for the hand to let us control and manipu-
late the physical environment (Britannica, 2008). The German word for
tool, Werkzeug, literally means “stuff to work with” or “stuff to create a
work with”. This definition has broadened with the development of human
culture. For instance, we have created tools for learning and collaborating.
The computer has widened this definition even further. It has stimulated
the creation of an endless range of tools for any purpose, one of the first
ideas being Vannevar Bush’s mind amplification tool, the memex (Bush,
1945). If one accepts the synonym of “software tool” for “software applica-
tion”, then the computer is certainly the tool with which the most other
tools, and also the most complex, were ever built.

In the domain of design, tools have always played a major role, because
design is all about manipulating the physical environment. It is necessary
to make a distinction between different purposes of tools here. The process
of design reaches from early conceptual stages through evolving stages of
sketches and prototypes to the planning for production, nowadays often
including production itself. The tools used are roughly related to these
stages. It is also necessary to distinguish tools from methods. The word
tool is often mistakenly used for what is actually a method. A method is an

Figure 1.1: The influence of tools on the evolution of mankind
Drawing by Braldt Bralds.

19C o n t e x tFigure 1.2: Toolset of a Make-Up Artist
Photo by the Author

20 Design Tools Design

instruction of how to go about doing something, and can involve tools.
For instance, Brainstorming is a method that involves pens and paper as
tools.

The oldest and most powerful conceptual tool is, and likely will remain,
the pen(cil) (Figure 1.3). It gives complete freedom, and every child knows
how to use it to express its ideas. Consequently, it is the most widely used
tool in any conceptual work, and this especially holds for design, if one is

not working with the production material directly. The pen enables us to
quickly, with minimal cost and effort, try out ideas, communicate them,
change and either discard or refine them. It is thus ideally suited for the
early stages of design, when ideas are quick and plentiful.

The pencil is also the most general tool, used across all disciplines. The
more the design process progresses, the more specialized the tools be-
come. Design is closely related to the available production technologies and
therefore the furniture designer uses different tools than the jewelry de-
signer to experiment with designs. Every designer uses a domain-specific

Figure 1.3: The pencil as a tool for exploring ideas
From Leonardo Da Vinci’s sketchbook, around 1500.

21C o n t e x t

(sometimes even individual) toolset that is constantly honed and extended
(Figure 1.2 shows an example), and the designer’s skills in applying these
tools are constantly improved through use, often to an extreme mastery.

While tools remain a practical means to an end, this close connection
with the tool also causes a dependency. Not only does the tool set the con-
straints for what we can design, it also defines how we perceive our work: It
structures our approach and determines how much effort it will consume.

 On a larger level, our workplace is shaped by the tools we use, and even
our working conditions (Abercrombie & Glaser, 1997). When a new tool
enters the stage, all of these circumstances will be transformed. And if it
is a dramatic change, as we are witnessing it with the introduction of com-
puters, it affects our whole work-life, where we live, when we work and how
we work together. We should thus be critical about the tools we employ.

1.2 Computer as design tool

Take the example of photographic design: As with other fields of design
the digitalization has transformed it from the ground up. Digitalization
itself is a new technology rather than a new tool, but it came to us in the
form of new tools. Not only do photographers now use digital cameras in-
stead of analog ones: Every changed aspect of the tools affects the way
photos are designed today. The large memory of the digital camera and
the ability to directly view the pictures taken has led to a different style
of shooting: It enables the photographer to be more flexible, experiment
more, and gives him more time to take pictures. On the other hand, it leads
to less concentrated and focused work because of the constant checking,
and discussing with clients.

Maybe even more importantly, the postproduction is now in the hands
of the designer. Retouching software like Photoshop® provides him with
endless creative freedom in manipulating a picture after it was taken. This
is an extreme change over the dark-room. Professional photographers now
shoot their pictures with the retouching steps in mind, so that a large per-
centage of the photographic design now happens at the computer. Much
more than a changed workflow, these tools have changed the viewing hab-
its of a whole generation, to the extent that photography has lost its status
of documenting the reality. Finally, digital tools have made photography
cheaper and less time-consuming, and therefore accessible to anyone.

22 Design Tools Design

From today’s perspective, the computer as a tool has brought mainly ad-
vantages for designers:

More freedom and flexibility:�� A much larger

design space, easier and cheaper experimenta-

tion

More focus:�� Less extraneous and less repeti-

tive manual work

More productive:�� Eased re-use, variation and

multiplication

More control over the design:�� Working with a

nearly perfect simulation of the final prod-

uct, and ability to create proofs

More self-responsibility:�� Designer as full-

service agent from concept to production

As we could already see with photography, advantages come at a cost. In
general, the accessibility of design tools has certainly led to a degradation
of quality overall, and the freedom of expression to a certain arbitrariness.
Design has become a mass phenomenon, it is less exclusive. But maybe
that is an advantage, after all (see also Schneider, 2005, ch. 16).

1.3 (Physical) Interaction Design

Besides revolutionizing the classic design disciplines, computers brought
with them a totally new area of design: computers. Or rather, electronically
equipped products. How do these objects look like, how do they appear,
when their function does not imply any form (Figure 1.4)? How do we use
them, when they have no physical function? This design need led to a new
discipline named interaction design. Due to its relatively short history and
potentially broad scope, there is no common definition for it. I will assume
Gillian Crampton-Smith’s definition here (Moggridge, 2006, p. xi):

Figure 1.4: Radical
black box design
for a tv set
Black 201 Television
Set for Brion Vega,
by Richard Sapper and
Marco Zanuso, 1969

23C o n t e x t

If I were to sum up interaction design in a
sentence, I would say that it’s about shaping
our everyday life through digital artifacts–
for work, for play, and for entertainment.

As Löwgren (2008) points out, the term has at least two traditions, one
from the academic, computer science-related area of Human-Computer In-
teraction, the other from a design background. This thesis is mainly con-
cerned with the latter, i.e., how we design better digital artifacts on a hu-
man experiential level that includes, besides functionality, aesthetic and
ethical dimensions.

This rather broad definition also means that it goes beyond just Graphi-
cal User Interfaces (GUIs). Because of the de-facto standard user interface
established by the desktop computer (and its variants), interaction design
is often mistaken as being occupied with just what happens on the screen.
On the other hand, the term tangible interaction design refers to non-GUI
interfaces, but only those which are based on tangibility. For lack of a term
to refer to a broader definition, I am sometimes using the term physical
interaction design here.

A classic example will help to illustrate this further. One of the first and
very convincing concepts for “physical” interaction design (in this case also
tangible) is the marble answering machine by Durrell Bishop (1992, Figure
1.5). An incoming voice message is represented as a marble and delivered
by the machine. Playing it back is a matter of putting it into the playback
bowl, and a marble is freed by putting it back into the container. Important
messages can be kept and treasured. The marble answering machine is an
excellent example for the freedom we gain with the form-lessness of digital
technology. Instead of just wrapping a grey box around it, we can design
the form and interactions towards human interests.

This enormous freedom is not easily turned into convincing products.
The design options and constraints have become exponentially more com-
plex. While there are already a number of well proven, integrated tools to
aid in the design of Graphical User Interfaces, the workbench for designers
of physical interactions is still scattered.

Figure 1.5: Marble
answering machine
By Durrell Bishop
(drawing by Jonas
Lowgren)

24 Design Tools Design

1.4 Research questions and goals

Based on these observations, this thesis embarks on answering the fol-
lowing questions:

What is the process of designing interactive ��

artifacts and what resources and tools does it

involve? Design is guided by a carefully re-

fined process. What is specific about design-

ing physical interactions?

Are there any problems with this process? What ��

are the weaknesses, and how could this be re-

lated to insufficient tool support?

What makes a good and successful design tool? ��

Can we formulate general criteria that a good

tool should obey?

And finally, which specific tools can be de-��

signed to improve or enhance the design pro-

cess?

1.5 Outline

In an attempt to answer these questions, this thesis takes the following
path: Based on the setting of the scene in this introductory chapter, chap-
ter 2 will approach the use of tools analytically. The design process is taken
as the foundation for an understanding of the broad range of activities that
a designer is occupied with today. Then the set of available tools is surveyed
with respect to the designer’s needs and the strategies these tools employ
to fulfill them. The chapter concludes with the discovery of gaps in the tool
support of physical interaction design, towards the beginning and towards
the end of the process.

Chapter 3 then distills the findings of the analysis into guidelines for tool
creation. It additionally draws from relevant research and personal obser-
vations to suggest the three tool design pillars of creativity, craftsmanship,

25C o n t e x t

and practicability.
An experimental attempt at filling the first of the identified gaps is made

with the tool proposed in chapter 4. Sketchbook aims to support the de-
signer in the early conceptual and sketching stages of the design. It inte-
grates with the physical sketching activities by providing an accompanying
structure and eased exploration. A sketchbook can be used informally, but
it can also be gradually formalized to the point where it feeds directly into
electronic prototyping toolkits.

The tool presented in chapter 5, Fritzing, aims to fill the second identi-
fied gap. It enables designers of physical interactions to move further to-
wards high-fidelity creation of prototypes. It is designed to take over where
the current prototyping toolkits stop, and provides an easy transition from
the use of breadboards to professional production of PCBs. Through en-
abling documentation and sharing of designs for the first time, it can be-
come a powerful driver of the design community. This chapter also recalls
the guidelines established in chapter 3, and illustrates how they can be ap-
plied.

26 Design Tools Design

27A n a l y s i s

Analysis

It’s a simple exercise -- a little

logic, a little taste and the will

to co-operate.

Raymond Loewy

about the design process

As we have already observed, we are using tools in a context: that of oth-
er tools (the tool set), a place (the workshop), and within a field of work.
This chapter analyses this context of use by looking at the design process
and the activities that constitute it, and relates them to the possible sup-
port with a specific tool set. A survey of existing computer tools in the
domain of interaction design will highlight several approaches how these
tools transform the design space to make it manipulable by the designer.
Finally, this chapter identifies gaps that could benefit from additional sup-
port through tools.

2.1 Models of the design process

Design is generally structured along a process that usually starts with a
brief and delivers a product, service, or other piece of work. There are as
many variations to the process as there are designers, and design agencies
advertise themselves with their perfected processes, but on a more abstract
level it is always akin. The terms used to describe the individual elements
differ depending on the perspective, but are often referring to the same
thing. The British Design Council has just, in an extensive survey, analyzed
the design process of eleven innovative major companies, and found “strik-
ing similarities” (Design Council, 2007, p.4), leading to their synthesized
“double diamond” model (Figure 2.1d). These models are helpful in order to

2

28 Design Tools Design

29A n a l y s i s

understand more about some general requirements for design tools.
The diagrams in Figure 2.1 show four alternatives from different authors

with different intentions. They all share the view that from far away the de-
sign process moves from a broad and open starting point through several
focussing stages to the final concrete result. Buxton calls this the “design
funnel”, and as Moggridge, makes clear that the stages are in fact itera-
tions. This suggests that tools must in the beginning be rather coarse and
allow working with lots of ideas at very little opportunity cost. Further
down the line the tools are staying similar in principle, but allow more and
more refined work with more attention to detail.

Looking at the process more closely reveals an inherently erratic path,
and while all diagrams acknowledge that, they describe different aspects of
the apparent chaos: Moggridge, being more interested in the micro-steps
of each stage, shows that designers in every situation make a new decision
on what to do next. Löwgren & Stolterman notice a continuous jumping
from the abstract to the concrete and back. This suggests that a tool should
provide flexible entry and exit points, allowing the designer to use it op-
portunistically.

Buxton and the Design Council take explicit note of the divergence-
convergence movements. This is also implicitly contained in Moggridge’s
diagram, where phases of ideation are followed by selection. From this we
can deduce that a tool should support the easy creation and management
of multiple concepts, as well as their comparison, in order to enable selec-
tion.

The design process thus differs strongly from a classical “waterfall”-like
engineering process: Rather than trying to plan everything in advance and
then following the plan step by step, it involves a lot of trial and error and
testing of original beliefs. And this is exactly what the design process is
tuned for, and what the tools have to support.

Figure 2.1 (left): Various descriptions of the design process
a) Top Left: Moggridge, 2006, p.730

b) Bottom Left: Loewgren & Stolterman, 2004, p.25

c) Top Right: Buxton, 2007, p.148, based on Pugh, 1990, p.75

d) Bottom Right: Design Council, 2007b, p.10

30 Design Tools DesignFigure 2.2: Map of design activities

CritiqueCreationDiscovery

>
Discover

Research

Analyse

Learn

Observe

Question
Understand

Generate

Envision

Inspire

Experience

Brainstorm

Structure

Abstract

Define

Formulate

Explore

Externalise

Sketch

Visualize

Experiment

Reflect

Review

Criticise

Discuss

Synthesize

Refine

Evaluate

Present

Propose

Argue

Select

Reject

Decide
Prototype

Test

Deliver

Specify

Produce

Implement

Describe

Document

31A n a l y s i s

2.2 Design Activities

In order to dive deeper into the design process and how tools are used
within it, we will now look into the individual activities that constitute the
designer’s job. Activities describe on an abstract level what a designer is ac-
tually doing, and might be directly supportable with appropriate tools. Ac-
tivities are the building blocks of the design process but due to its chaotic
nature activities can only roughly be correlated to process stages. Figure
2.2 shows an attempt in naming relevant activities and clustering them: In
the beginning they center around the discovery of the design space, then
gradually move towards creation. In an iterative cycle between creation
and critique the activities then lead to the final delivery. The activities men-
tioned here are neither meant to be non-overlapping nor exhaustive. Com-
munication and collaboration are not separately mentioned as they can be
regarded as part of many other activities. A few of them are examined here
with respect to the employment of software tools:

Research

At the beginning of every project is the need of learning as much as pos-
sible about the design task and its context. Related projects, technologies,
background theories, academic research, market opportunities, user opin-
ions, as well as the client’s situation are of interest and can serve as inspi-
ration, opportunities or constraints. Löwgren & Stoltermann note that a
designer’s research is in principle different from academic research: While
the latter is predominantly occupied with acquiring knowledge and truth,
the former is using it as a means to provide a fertile foundation for design
work (2004, p.31)1.

Tools can help with collecting research findings and make them accessible
throughout the project. They can help to create an overview and structure
the results in meaningful ways.

Abstract

The research results are usually specific to similar, yet other contexts. The
designer therefore needs to abstract from these concrete findings in order
to turn them into insights that could benefit his own design.

1 In German, these two notions are expressed with different words:
“Forschung” refers to the academic type of research, whereas “Recherche”
is closer to the designer’s inquiry about the situation.

32 Design Tools Design

33A n a l y s i s

A tool could help to create diagrams of abstractions, while keeping refer-
ences to the research that has led to them.

Envision

The vision plays a central role in the design process. It often starts out as
a rough idea that is described with distinct words and visuals, sometimes
metaphors. For the designer it is important to evolve this vision and con-
tinuously return to it as a point of reference.

Sketch

Sketching is the pivotal activity in the design process. Sketching is a
cheap and effective means used to externalize concepts and ideas, pres-
ent and discuss them. It allows the designer to quickly output a breadth of
ideas, which as we have seen is crucial to initiating the design process. As
discovered by Schön (1983), sketching is tightly integrated with reflection
(the seeing-drawing-seeing-cycle) and therefore functions as a powerful
catalyst: Through sketching an idea it automatically evolves.

Bill Buxton has written (2007) and lectured extensively on the impor-
tance and roles of sketching. He situates it explicitly in the beginning of
the design process and distinguishes it from other acts of externalizing
through its transient and non-committing nature. Figure 2.3 shows the
continuum between sketch and prototype and figure 2.4 shows an example
from the author (Hemmert et al, 2008).

A good sketching tool must be barely noticeable, fast and easy, yet at the
same time highly expressive. It is hard to imagine a computer-based tool
that is as ready-to-hand as pen and paper, but the computer could add the
ability to make animated or even interactive sketches, more suitable for
designing interactions. However, designers make very creative and oppor-
tunistic use of the material available to them for sketching their ideas. Be-
sides all things pen and paper, any objects and materials, even electronics
can end up in a bricolage to express an idea (Buchenau & Suri, 2000). The
computer will therefore not necessarily be the central sketching tool.

Present

A designer constantly needs to present the current state of his work to
his colleagues, the client, or other stakeholders. Sometimes it serves the

Figure 2.3: The
Sketch to Proto-
type Continuum
Buxton, 2007, p. 140

Figure 2.4 (left): Sketching vs. Prototyping
Different levels of fidelity

34 Design Tools Design

discussion of the work-in-progress, sometimes it needs to be highly pol-
ished, and designers are very aware of all the details that can influence a
presentation’s impact.

For review purposes design tools should allow a quick and direct pre-
sentation function for discussion, including the ability to annotate the
presented designs. The requirements for external presentations are very
different: They are created in a process just like the other design work and
a tool should accommodate for this.

Select

“Design is a negative thing” says Buxton, and he means that design is
about choosing the good ideas from the plentiful that are generated in the
process. Selection happens all the time, when a sketch is rejected or it is
refined. For larger decisions it follows a discussion and critique session, but
it is the experience that allows the designer to make decisions quickly when
not all suggestions can be fully explored.

A tool could help by presenting and comparing designs side-by-side and
also record selection arguments. It could also trace the history of selections
during the process, in the case that a selection needs to be defended again
or a chosen path turns out to be unfruitful and needs to be reverted.

Prototype

Prototyping can be seen as an advanced, higher-fidelity form of sketch-
ing. Several decisions have already been made so that it is worth to put
more effort into fewer prototypes. The prototype already gives a good ex-
perience of what the final product could be like.

Prototyping tools should allow an easy transition from earlier sketches,
but can require more learning effort. They should be able to simulate an
experience that is close to a final product and allow the designer to leverage
cutting-edge technology without being an engineer.

Test

In many design disciplines, designs also need to be tested. Beyond tech-
nical functionality and reliability, the main test case is the user (or focus
group) test. Does he understand it? Does he like it? Does he find it valuable,
and also appealing? User testing is a tricky task because it is difficult to set
up realistic testing situations and to minimize the observer effect. Also, the
designer needs to be critical about individual user’s opinions and abstract

35A n a l y s i s

from them, before he feeds it into his design.
Testing interaction design has become its own industry and profession,

that of the usability engineers. As an engineering-oriented community,
they have created an artillery of tools, methods and processes. Yet, design-
ers need to do tests themselves, and therefore are in need of design tools
that integrate testing functionalities. This requires the sketching and pro-
totyping tools to be able to simulate interactive user sessions. Also, they
could do minute recordings of test sessions and provide playback and re-
porting.

Produce

Nowadays designers more and more become producers of their own
designs. This is a historic shift, because when the design profession was
originally born in the age of industrialization, its main task was to merely
create a model, the prototype, that would then be mass-manufactured by
machines. The current evocation of a craft and DIY culture reflects this and
even constitutes a democratization of innovation (von Hippel, 2005).

Because of readily available tools and machines, this trend is already a
reality for most graphic designers. Scanners, color-proof workflows, layout
and illustration software, and high-quality printers give them the ability
to provide a full service, and even sell their own goods. The term DTP for
desktop-publishing exists since the 1980s. When it comes to designing
interactions, GUI designers are even better equipped. All machinery they
need is a computer, and plenty of software exists that eases production by
providing graphical design tools that more or less automatically translate
designs into code (WYSIWYG: what you see is what you get).

Production is the classic domain of tool support. At this level tools need
to give full control about every single detail of the design. A designer has to
be knowledgeable about the involved production technology and the tool
enables him to employ it to reach the highest quality.

Document

Finally, designs need to be documented on several levels. As already men-
tioned it is helpful to keep track of the decisions made during the design
process, but whenever a design is delivered it needs to be accompanied by a
documentation. It may contain usage instructions, construction and tech-
nical details, and contextual material that helps to see the design within a
larger context.

36 Design Tools Design

Especially for technical documentation there is a lot of room for tool sup-
port. Designers need to communicate with engineers and other production
people and the design tool should be able to export documentation in a
suitable and compatible format. While this is often the case for production
design tools, it would be helpful to start collaborating with engineers ear-
lier on in the process. This suggests that also sketching tools could help to
create formal descriptions of design sketches.

This quick overview showed the wide range of activities and tasks that
designers are confronted with, and the potential and opportunities for tool
support. Traditionally, software tools targeted at designers cover especially
the ‘produce’ activity, stretching out into ‘prototype’ and ‘document’, but
designers could benefit from tools in other critical activities.

Figure 2.5: Interaction design
Graphic Design, Product Design, Graphical User Interface De-
sign, Physical Interaction Design

37A n a l y s i s

2.3 Methods & Techniques

A tool is not to be confused with a method: While tools assist in ma-
nipulating the physical reality, methods are descriptions of a procedure of
how to approach or achieve something. Techniques are smaller entities of
a method, usually related to a particular form of expression. For instance,
the use of personas is an interaction design method where a prototypical
user’s biography and behavior are sketched out in order to approach the
design in a more direct user-oriented way (Cooper, 1999).

Tools assist in carrying out methods, and often these tools are very small
and specific. The Information Architecture Institute offers a set of tools of
this kind on their web site2. For example, they offer templates for creating
a task analysis and a diagram to perform the personas method.

A further interesting opportunity is in feeding more general design tools
with integrated support for methods. This way, they encourage the use of
best practice methods within a design process. A good example for this is
the support for scenarios in rapid prototyping tools for web design.

2.4 Designing Physical
Interactions

The process and activities described so far are part of all design disci-
plines. But what makes designing physical interactions different? What are
its specific challenges that a designer has to come to terms with?

From a design-historical perspective, the difference is in the unity of the
skills of graphical user interface design and that of product design. The
former were the first to experiment with the endless variations of interac-
tivity offered by the computer, and the latter are masters of the object and
also the electrically and mechanically induced interactions. Their combina-
tion is the Cartesian product of form and function: Any shape can have
any functionality and interactivity (Figure 2.5). The design space is a 4D-
medium where space and time can be freely designed, with few constraints.
Therefore only a combination of tools, software and hardware, rather than
one all-encompassing tool, can fully support this type of design.

The main design element is interactivity and this means creating a be-

2 http://www.iainstitute.org/en/learn/tools.php

http://www.iainstitute.org/en/learn/tools.php

38 Design Tools Design

havior that corresponds with a user. The designer is a choreographer of
time and flow, of character and movement. It is obvious that a tool needs to
help with exploring these interactive behaviors. It should give expressive
control over time (states and transitions), behavior, and objects.

More than in any other design area, the context of use is of great impor-
tance. What is the situation, who are the persons, what are their inten-
tions? These crucial aspects are often explored in character descriptions,
scenarios and stories, much as in film. A tool could strive to integrate these
with the design of the artifact itself.

In his philosophical treaty of interactivity, Dag Svanaes demands that in-
teraction designers should learn to be good kinesthetic thinkers, for exam-
ple by taking dance or Tai Chi classes (Svanaes, 1999, ch.12). They should
be able to “think with their bodies” and have a trained sense of how people
experience and interact with physical objects. For tools, Svanaes suggests
that they should allow the designer to work in the same sense modality of
the resulting product, not through abstractions: Design interactivity di-
rectly through interaction (ibid., p.231).

Finally, the designer needs to be acquainted with the technology that
he is using in his product. For designing physical interactions, he needs
to learn about high-tech electronics hardware such as controllers, sensors,
and actuators. It is important to strike the right balance and to just learn
about the opportunities and constraints of these elements, and not to get
overburdened by technical details. Tools can provide exactly this: Expose
the functionality and abstract the underlying technological complexity.
Software tools have to integrate with hardware tools to enable the designer
to build prototypes without the help of an engineer.

2.5 Existing Tools

The landscape of existing specialized tools is rather sparse, but there are
a number of interesting tools from related disciplines. The following sec-
tion highlights selected aspects that could be incorporated into tools for
designing physical interactions.

Rapid prototyping for GUIs

Through its clearly defined constraints and standards, the design of
graphical user interfaces for web sites or standard software lends itself per-

39A n a l y s i s

fectly to the support of complete prototyping suites. At least a dozen tools
exist in this category, with several commercial versions, like iRise Studio3
or Axure RP4. They all allow for quick WYSIWYG creation of GUIs, with
different foci. The level of fidelity that can be achieved with some of them
is close to a real application. For example, iRise offers the following specia-
lised features:

Interaction flow editor (Figure 2.6) The designer can start by sketch-
ing just the abstract flow of interactions in a state-chart-like editor. Differ-
ent paths through the application are composed by dragging and dropping
pages and decisions, and connecting them. These can later be fleshed out
in detail. Classical diagramming software like Microsoft’s Visio5 can also be
used for this, and there is even a set of specialized diagram stencils avail-
able, the “visual vocabulary”6. These tools are however not providing the
benefits of integration.

A disadvantage with this tool is that it lures the designer to think of
the interaction as a sequence of states/pages, which as a general concept
is problematic. With technologies like AJAX and Flash, individual pages
become more and more dynamic and offer rich interactions, which can no
longer be modeled in such a diagram. Still, they help to keep an overview
and discover structural problems and gaps.

Annotation during presentation (Figure 2.7) The integrated presentation
functionality is enhanced with the ability to add comments and directly
link them to items in the current view. These notes can then be accessed in
the design view and reviewed.

Integrated documentation (Figure 2.8) A classical report-like documen-
tation is automatically assembled from the design. This is again tightly in-
tegrated with the design, with comments visually linking to page elements.
The documentation serves as a complete description for implementation.

Sketchy rendering

A lower rendering quality is often chosen intentionally by designers in
order to make clear that the presented sketch is unfinished. People asked to
criticize it are then more apt to do so. The perfect look of computer gener-
ated drawings, even if sketches, thwarts this. Some tools therefore employ

3 http://www.irise.com

4 http://www.axure.com

5 http://office.microsoft.com/visio

6 http://www.jjg.net/ia/visvocab

http://www.irise.com
http://www.axure.com
http://office.microsoft.com/visio
http://www.jjg.net/ia/visvocab

40 Design Tools Design

Figure 2.6: Interaction flow editor
iRise Studio

Figure 2.8: Integrated documentation
iRise Studio

Figure 2.10: Sketching
DENIM

Figure 2.9: Sketchy rendering
Google SketchUp

Figure 2.11: Progressive refinement
DENIM

Figure 2.7: Annotation during presen-
tation
iRise Studio

41A n a l y s i s

algorithms that give their renderings a hand-crafted look. Figure 2.9 shows
a Google Sketchup7 rendering of a building in a marker pen style.

Early-stage sketching

DENIM8 is a sketching tool for the early stages of web site design. The
authors identified the gap between sketching with pen on paper and only
later transferring the initial ideas to a software tool for refinement. Their
solution lets the designer use the computer right from the start. Being a
research project, DENIM makes use of several unusual interface ideas. (Lin
et al., 2000)

Sketching (Figure 2.10) The software is to be used with a pen tablet and
makes consistent use of this fact. With the pen tool pages, connections and
texts can be drawn directly and are automatically recognized, and the tool
can be switched to a hand, an eraser, or stamps for placing widgets. The
sketchy look is retained. Advanced users can learn shortcut pen gestures
and use a pie menu for additional functions.

Integrated multiple perspectives Sketching a rough outline, a site map,
some storyboards, and also page designs–the designer jumps seamlessly
from one to the other, leaving unclear or refining whatever is opportune.
Since these different perspectives effectively represent different levels of
abstraction on the same content, a zoom slider can be used to move back
and force between them (Figure 2.12). Finally, the system also provides a
(separate) interactive presentation mode.

Progressive refinement (Figure 2.11) Inherent in the levels of abstraction
is the possibility to move from a coarse design in the beginning (e.g., the
site map) to finer levels later (e.g., sketching page details). Additionally,
pen drawings can progressively be replaced with higher-fidelity computer
drawings, while retaining the syntax.

Exploring interactivity

Providing a way to experiment with interactivity effectively means giving
an expressive access to programming. Several fundamentally different ap-
proaches exist, with different trade-offs.

Design-oriented API (Figure 2.13) The simplest way to make program-
ming interactivity accessible for designers is to provide a simplified, de-

7 http://sketchup.google.com

8 http://dub.washington.edu:2007/denim

Figure 2.12:
Zoom levels
DENIM

http://sketchup.google.com
http://dub.washington.edu:2007/denim

42 Design Tools Design

Figure 2.13: Design-oriented API
Processing

Figure 2.15: Stage, actor, behavior
Scratch

Figure 2.17: Progr. by demonstration
Exemplar

Figure 2.16: Visual progr. language
Cycling74 Max

Figure 2.18: Physical simulation
Phun

Figure 2.14: Timeline
Adobe Flash

43A n a l y s i s

sign-domain-oriented Application Programming Interface (API). This is
part of the success of the Processing environment9 (Reas & Fry, 2007), an
open-source programming environment for designers and artists. Another
aspect here is the extremely low entry barrier that hides all of the complex-
ities usually involved with programming, while letting the user move on far
beyond the foundation provided by the tool (low threshold, high ceiling).

Timeline (Figure 2.14) Interactivity is time-based, and so several author-
ing environments make use of the easily understood concept of the time-
line. It lends itself especially to creating frame-by-frame-like interactions
such as presentations or menus. Adobe’s Flash10 has a highly evolved time-
line with layers and different types of frames, and combines it with script-
ing to overcome its limitations.

Stage, actor, behavior (Figure 2.15) Because of its real-life-metaphor,
programming by placing actors on a stage and assigning them behaviors
is an even easier graspable concept. Because it also mimics the modern
object-oriented programming style, several educational tools like Scratch11
and Alice12 use this approach. They both combine it with a refined visual
approach to compose behavior.

Visual programming languageIn order to avoid the need to learn the syn-
tax and semantics of a programming language, several tools use a more
“tactile” approach. The user can connect functional blocks to create an algo-
rithm. The various languages range from tools with rather low-level blocks
for professional media production like Max13 (Figure 2.16), PureData14,
or vvvv15, to higher-level block languages in educational tools like Scratch
(Figure 2.15), Alice, or AgentSheets16. The latter enforce a higher degree of
structure and abstraction for the benefit of learning. Visual programming
languages are very popular among designers, not just because of the fact
that they are visual, but also because they tend to deliver results quickly.
Their major disadvantage is that they quickly become incomprehensible
with larger projects.

Programming by demonstration The principle behind this is to perform

9 http://www.processing.org/reference

10 http://www.adobe.com/products/flash

11 http://scratch.mit.edu

12 http://www.alice.org

13 http://www.cycling74.com/products/max

14 http://www.puredata.org

15 http://www.vvvv.org

16 http://www.agentsheets.com

http://www.processing.org/reference
http://www.adobe.com/products/flash
http://scratch.mit.edu
http://www.alice.org
http://www.cycling74.com/products/max
http://www.puredata.org
http://www.vvvv.org
http://www.agentsheets.com

44 Design Tools Design

Figure 2.19: Transparent blueprint
Adobe Dreamweaver

Figure 2.21: Input-output box
Arduino

Figure 2.23: Integrated prototyping
d.tools (Design view)

Figure 2.22: Integrated prototyping
d.tools (Workflow)

Figure 2.24: Integrated prototyping
d.tools (Analysis view)

Figure 2.20: Design view vs. imple-
mentation view
Adobe Dreamweaver

45A n a l y s i s

the intended behavior of an object by, e.g., making a mouse movement.
The computer will then record this behavior and assign it to the object. This
method has not been very successful yet. Several research projects in inter-
action design it for creating graphical animations (K-Sketch17, Davis et al.
2008) or for sketching continuous interactions (Li & Landay 2005). When
designing physical interactions, such an approach can be very helpful to de-
sign sensor-based gestures. The Exemplar toolkit18 lets the designer dem-
onstrate a behavior with the actual sensor and provides means for editing
and utilize the resulting values (Hartmann et al., 2007, figure 2.17).

Physical simulation (Figure 2.18) A form of expressing interactivity that
could be interesting for some types of physical interactions is through
physical simulation. Tools like ASSIST19 (Alvarado 2000), or more recently,
Phun20, allow sketching of 2d objects in a world that obeys physical laws.
Different mechanical elements like hinges and springs, as well as material
properties can be simulated. However, these tools only allow effective 2d
simulation at the moment.

In general, it can be said that while all these alternatives are intuitive
solutions for particular problem sets, an actual programming language still
allows for the largest expressivity.

Production

For some domains, the tools have matured so far that they enable the
designer to create the the actual product all by himself. Especially in the
domain of web design, the availability of such tools have spawned an
enormous amount of self-proclaimed full-service designers. For instance,
Adobe Dreamweaver21 is a highly evolved tool that lets the designer incor-
porate a broad range of modern front- and back-end technologies. At this
stage, the designer needs to be somewhat intimate with the technology, as
every adjustment is directly translated into code, but the use of assistants,
examples, and tutorials ease the learning curve.

Transparent blueprint (Figure 2.19) Since the wysywig editor here does
not allow as much freedom as in prototyping or graphic design tools, pre-
createddesigns can be embedded as a semi-transparent background. The

17 http://www.k-sketch.org

18 http://hci.stanford.edu/exemplar

19 http://rationale.csail.mit.edu/project_assist.shtml

20 http://www.phunland.com

21 http://www.adobe.com/products/dreamweaver

http://www.k-sketch.org
http://hci.stanford.edu/exemplar
http://rationale.csail.mit.edu/project_assist.shtml
http://www.phunland.com
http://www.adobe.com/products/dreamweaver

46 Design Tools Design

Figure 2.25: Activity-centered design
ActivityStudio

designer can then use the production tool to recreate
the design as closely as possible.

Design view vs. implementation view (Figure 2.20)
It is essential for the designer to stay in full control of
the technical implementation, because every detail can
have an effect on the outcome. It would be deceptive
to just work with the wysiwyg view. Because of that,
production tools often feature prominent functions to
switch between a design and an implementation view.

Design tools for PUIs

The field of physical interaction design is relatively
young, but has seen a steep increase of interest among
designers. This is not least due to the recent availabil-
ity of easily accessible electronics prototyping toolkits.
Apart from that, however, there exist hardly any tools.

Input-output-boxes The aforementioned prototyping toolkits are usually
in the form of “input-output-boxes”, because this model coincides well with
a naive view of an embedded computer. These are easily programmable mi-
cro-controllers that can read from digital and analog inputs and write to re-
spective outputs. Originally targeted at beginners of learning electronics,
they were usually either too limited or too complicated to use. The Arduino
platform 22 (Mellis et al., 2007) was the first to effectively target design-
ers and artists and brought a breakthrough. It combines a robust micro-
controller with a simple development software (Figure 2.21). The technical
know-how required to hook up electronics is kept at a minimum.

Integrated prototyping A first step towards a more fully integrated tool-
kit was taken with the research project d.tools23 (Hartmann et al., 2006). It
combines design with testing and analyzing (Figure 2.22). The main prin-
ciple is a close and automatic coupling between electronic building blocks
and their visual representations in the software. Based on this, a graphical
state-chart editor lets the designer visually program the artifact’s behavior
(Figure 2.23). Once the design is ready, it can be tested with the physical
device. During the test the software records an event log and synchronizes
its with a video recording. This allows for convenient and integrated analy-

22 http://www.arduino.cc

23 http://hci.stanford.edu/dtools

http://www.arduino.cc
http://hci.stanford.edu/dtools

47A n a l y s i s

sis of the user tests which can even be navigated by the physical device
(Figure 2.24).

The tight integration furthers frequent testing and fast iterations, while
focusing on the interaction design. A disadvantage is the requirement of
specialized hardware which makes the electronics somewhat inflexible and
clunky, The system is therefore mostly used for medium-stage sketching.

Activity-centered design (Figure 2.25) A unique approach to designing
for ubiquitous computing support of long-term activities is proposed in
ActivityStudio24 (Li et al., 2008). The toolkit provides a similarly integrated
environment as d.tools, but adds a focus on users’ activities and narratives.
Activities are treated as a first-class design object and together with sto-
ryboards build the basis of a design prototype. ActivityStudio also proves
that it is possible to build a design tool based on a general theory of interac-
tion design (“activity theory”, Kaptelinin & Nardy 2006).

2.6 Gaps

The investigation so far has provided a map of the design process and
relevant activities, and the overview of existing tools has shown how inter-
action design is currently covered with support through computer tools.
The set of tools is quite rich and manifold, but mostly with respect to the
design of graphical user interfaces. Figure 2.26 maps the main tools 25 of
the core design activity (i.e., designing) against the main process stages.

Graphical interaction design is very well supported along the whole pro-
cess, with several alternatives for each stage. Only in the early concept stage
there is just a research project available – due to the moderate complexity
involved and effective concept work with pen and paper it can be argued
that the need is limited here. For designing less standardized interactions,
another set of tools supports sketching and prototyping well, but unless
the designer is also an expert programmer, it comes short of professional,
distributable production.

The support for physical interaction design is even more confined to
sketching and prototyping. Arduino is a classical prototyping toolkit, while
d.tools is more directed towards sketching. Unfortunately, like DENIM,

24 http://activitystudio.sourceforge.net

25 In the case of similar tools the most known one was picked as a rep-
resentative.

http://activitystudio.sourceforge.net

48 Design Tools Design

d.tools is a research project that is no longer actively developed. The gaps
are easily identified at both ends of the process: Concept work as well as
production are not currently supported by tools.

But what does that mean? Are these tools necessary? Concept work is dif-
ficult to support because of the complex and essentially open design space.
The first stages are explored with hand sketches and materials in the real
world. However, these are usually not interactive and difficult to maintain,
and it could be helpful to have a tool that integrates into current practices
to improve this situation.

For the far end of the process, when the design nears a production level,
designers currently need the assistance of electrical or mechanical engi-
neers. They can build fully interactive artifacts, but they remain far from
a redistributable form. It could be argued that designers simply lack the
engineering knowledge required, but the GUI design tools have success-
fully shown how this knowledge can be leveraged for designers. Here lies
another opportunity for empowering tool support.

Before these two opportunities will be explored in detail, the next chap-
ter will be occupied with the tools themselves and extract guidelines for
what makes a powerful tool.

Figure 2.26: Matrix of interaction design tools
(Software tools only; research projects in light gray)

49A n a l y s i s

50 Design Tools Design

51D e s i g n i n g T o o l s

Designing
Tools

A good tool is one that is widely

used and is effective and efficient

towards its purpose.

I made up this definition by hi-jacking that of creativity, similar in spirit:
“Creativity is the ability to come up with ideas or artifacts that are new, sur-
prising and valuable.” (Boden, 2004, p. 1). It could be a definition of what
makes a good tool, and still not explain what that is like, or how it is made.
Nevertheless it is a sensible definition, because it is led by practicality, mea-
suring the success of a tool by the overall impact. ‘Widely used’ is meant
with respect to the potential number of use cases, and to counter-balance
cases of forced monoculture, two measures of usefulness are added. A good
tool is used effectively, i.e., its user can achieve what he wants, and he can
do so efficiently, i.e., with a minimum use of resources.

But we will here be concerned with how to create a tool that reaches this
state. The previous chapter offered concrete opportunities for tools. This
chapter collects a set of criteria that should guide the tool-maker and fo-
cuses on three main topics that are especially relevant for making design
tools: creativity, craftsmanship, and practicality.

3.1 Creativity

Any design tool should support creativity. The work of the designer now-
adays is centered around this word, and as we saw, the design process is

3

52 Design Tools Design

tuned towards a creative result. The research into “creativity support tools”
has recently seen an intensification and there are now several recommen-
dations on how to construct a tool, summarised in Resnick et al. (2005).

Exploration and experimentation

The tool should support an exploratory approach and facilitate experi-
mentation. This is contrary to a waterfall-like tool that lets the user move
step by step towards the final outcome. Designers want to be aware of all
the expressive freedom that a tool provides and safely and effectively com-
pare alternatives of how to proceed.

This requires the tool to be trustworthy. The user should always be in
charge and aware about the state of the program. Automatic saving and
infinite undo are basic functionalities to ensure a safe environment, but it
can be enhanced with a thoughtful and detailed interaction design that lets
the user see and anticipate the effects of his actions.

Furthermore, the tool needs to reveal its scope and possibilities. Ideally,
it does so in an incremental fashion, so that the user can grow with his skills
and is not overburdened from the start. Besides a thorough documenta-
tion, a very effective way is to provide a broad range of practical examples.
Designers are highly inclined to look at these, experiment with them and
see the effects – trial and error. This should not be underestimated, espe-
cially since it takes a great effort to create good examples. Other techniques
for revealing are auto-completion or visual browsers.

The need to experiment can be explic-
itly addressed by supporting variation and
alternatives (Terry et al., 2004). E.g., in-
stead of a monolithic project file, the tool
could treat a project more like a tree with
the ability to branch from one version into
multiple alternatives (much like a code ver-
sion control system). Similarly, variations
could be supported on a per-document
scale (e.g., by different style sheets). The
Adobe tool suite offers per-object styles
that can be safely explored with a preview
and modified later (Figure 3.1).

Figure 3.1: Preview and object styles
Adobe Illustrator

53D e s i g n i n g T o o l s

Low threshold, high
ceiling, wide walls

This metaphorical description of the
room that the tool architect should con-
struct refers to the learning curve. First
of all, the tool should be very easy to get
started with (low threshold). From open-
ing it up it should be immediately possible
to be expressive, without the need of mak-
ing any configurations up-front or having
to go through a lengthy compile process to
view the result.

Even though the start should be sim-
ple, the tool should not limit the user in
his expression. The tool should be open-
ended and allow professionals to work on
sophisticated projects (high ceiling). This
need can sometimes conflict with the first, when the ease of making simple
things prohibits the capability to make complex things. However, if the
tool is targeted at an early design stage, a low threshold is more important,
whereas a high ceiling becomes more important in a tool made for a later
stage.

Finally, the wide walls suggest an openness of the design space. The tool
should not be too specific in the range of things that can be created with
it. Otherwise, all results will be similar and the room is too narrow for
transformational creativity to occur. A design tool should not be limited to
certain use cases and a set of predefined modules. It should be inherently
open and leave it to the user what he intends to create, and also how he
wants to create it.

Informality

Another strategy to support the erratic design process is to allow for an
informal tool use (Cook & Bailey, 2005). While pen and paper support this
type of use very well (you can sketch anything you like in any degree of
refinement), the computer is the epitome of formalism. This is exempli-
fied in many tools, where only predefined actions can be made. While it
is not possible to overcome this per se, it can be diminished by allowing

Figure 3.2: Integrated online sharing
Scratch

54 Design Tools Design

free-form annotations and relaxing composition rules. For example, a GUI
design tool could allow the temporary placement of widgets in free space
before requiring a layout rule. This supports the designer in beginning a
composition without committing to the details yet, and lets him off-load
ideas through external representation.

Collaboration and community

As already discussed in chapter 2, collaboration goes beyond the shared
access to project files: Since there is usually only one designer in charge of
a project part, it is more important to have a good presentation functional-
ity, ideally combined with an annotation facility.

Csikszentmihalyi has shown that creativity, even though it starts from
the individual, is a social process (1996). It involves the leaders of the
field of practice and the foundation of the domain. The recent upsurge of
a creative do-it-yourself community proves that technology, especially the
internet, is a key factor for fostering creative communities. They revolve
around web sites like instructables.com, makezine.com, or etsy.com.

Design tools can build their own online communities to multiply the cre-
ative outcome that can be produced with the tool. Processing1 has been
the first to be highly successful with this approach by making sharing an
essential part of the tool, and Scratch2 has evolved this: The software con-
tains a prominent one-click “Share it online”-button, and projects from the
web gallery can be downloaded and opened with one click, fully editable
(Figure 3.2).

3.2 Craftsmanship

Design has originally evolved from craft, and many of its values are popu-
lar today. Tinkering with the materials, and only allowing the highest qual-
ity, the craftsman strives to unite utility and beauty. He builds up his tool
set with great care, adds one by one as his skills grow, and learning more
and more about the character of each. As the craftsman grows to become a
master, he begins to customize his tools, making his own to suit his work-
ing style and to achieve what was not possible, or not as comfortable, with

1 http://www.processing.org

2 http://scratch.mit.edu

http://www.processing.org
http://scratch.mit.edu

55D e s i g n i n g T o o l s

the others. This image of the craftsman as a master tool user should guide
the tool maker.

Detailed control

A software design tool often uses abstracted representations of the de-
sign object to enable an eased, symbolic interaction. This should however
not come at the cost of fine-grained control, especially at the later stages
of design, when the designer cares about every tiny aspect of the product.
Simplification should at this stage be valued less than providing absolute
control – acquiring mastery and honing ones skills is a necessity of becom-
ing a good designer. One has to get intimate with the design material, and
in the case of the interaction designer this is computer technology. A good
example is the simultaneous view of design and code in Dreamweaver (Fig-
ure 2.20). For earlier stages, the control may be less fine, just as the crafts-
man may use a coarser tool to give the object its first rough shape.

Figure 3.3: Custom-made tools of a ceramic craftsman
Photo by Cory Lum

56 Design Tools Design

Figure 3.4: Tool aesthetics of different communities
Processing vs. Eclipse (web site and software)

Tool appropriation

As we saw, as the skills in using a tool grows, the advanced user seeks to
appropriate the tool to make it a tighter fit with himself. The tool becomes
transparent to the master user, they become a unity to the amazed ob-
server. Accustoming for the needs of different skill levels, from novice to
expert, is a classic in user interface design, but often only means custom
settings, shortcuts and macros. Designers might want to customize a tool
even further by changing certain behaviors, or extend it by adding func-
tionality and modules (Figure 3.3). Open-source tools obviously make this
possible, but only for expert programmers. A more accessible option is the
integration of end-user programming like a scripting language.

Focus

A tool should do (at least) one thing very well. It does not help the de-
signer if a tool can do many things more or less well, if the core purpose is
not handled perfectly. The tool maker should therefore focus his work on
this core functionality and not divert it into additional features before one
is done right. Focus makes a tool valuable, because it gives the designer a
reason to use a particular tool for a certain task: it is the best. Addition-
ally, the tool’s user interface will stay simple in the best sense, focused on
the main activity without diversions. More functionality that is added later
naturally receives lower priority in the interface.

57D e s i g n i n g T o o l s

The downside of specialization is the time involved to learn and switch
between many different tools. This can be balanced by compatibility be-
tween tools, common formats and interfaces (see also “Flexibility”).

Aesthetics

Not only should a tool enable its user to create aesthetic artifacts, it
should also have an appealing aesthetic to itself. Designers are critical
about aesthetic properties and are more likely to use and identify with a
tool that pleases their eyes and has a good feel. Aesthetics add to the joy of
use, but it is also the trust that only an aesthetic tool can be a good tool.
The look-and-feel should reflect the user group and their approach. For
example, compare the look of the Processing tool and web site to that of
Eclipse (Figure 3.4). Both tools essentially provide the same functionality
and are very popular, but while Eclipse is made for engineers who like fea-
tures, Processing clearly targets designers who prefer simplicity and focus,
and feel more at home in this environment.

3.3 Practicality

All of the above is worth nothing if the tool is not used because it ignores
the designer’s day-to-day requirements of the job. In their survey, Myers et
al. identify a number of promising research concepts for design tools that
have never caught on in the community (Myers et al., 2000). They were too
hard to learn, required the designer to follow a prescribed model too nar-
rowly, or simply were not paying off the effort. Stolterman et al. (2008) as-
cribe this to a missing understanding of design practice among researchers
who are proposing new tools. Tools have to prove their practicality through
use, and it is important to design a tool so that it survives at the hectic
designer’s workplace.

Cost

The decision of adopting a tool is obviously influenced by its costs. De-
signers tend to choose their main tools carefully because they will become
heavily invested in it to build up skill and expertise. The main set of tools
is usually comprised of only a few, and they can be more costly in terms
of price and learning effort. A tool that functions as an additional utility
should have the opposite characteristics. In general, designers are often

58 Design Tools Design

pragmatists and result-oriented (one could also say effect-oriented). Re-
sources are precious and used to the greatest effect. It does not matter so
much how something is done, if the result is satisfactory.

Of course the financial cost should in general be low to allow wide-spread
adoption, but a good tool that saves time or enables the designer to accom-
plish something that is not possible otherwise can ask for a higher price.
However, as open-source tools are gaining market strength, the customer’s
expectations are changing and tool makers have to look for alternative
ways to collect money. E.g., the Arduino team is earning its worth through
selling the hardware and offering workshops and consultancy. Also big
companies such as Adobe are beginning to offer their tools as open-source
(e.g., the Flex SDK3) to ensure the adoption of their technology – which can
be best designed for with their commercial products.

The other important cost factor is time. If a tool is considered one of the
core tools of the designer, an extensive learning phase at the beginning is
actually acceptable. The high threshold here comes at the benefit of a high
ceiling, i.e., a powerful and expressive tool that can be applied universally.
Also, the tool should then be very efficient, costing little time to achieve a
lot. More time can be gained by providing open interfaces to other tools.
Compatible file formats alleviate the cost of moving from one tool to the
other.

Flexibility

A high investment in a tool can only be made if the tool is very flexible. It
should allow a wide range of applications, and be customizable and extensi-
ble by the user or third parties. The tool maker should announce a roadmap
that further extends this flexibility. Instead of trying to bind his custom-
ers through proprietary standards, he should make use of open standards
and open interfaces. Again, Adobe is a good example of a company which
has successively opened its base technologies (Flash) when customers were
already on the fringe to adopt other technologies (AJAX). Besides eased
interchange with collaborators, the use of open file formats allows the de-
signer to work on the files with other tools which might be more special-
ized for certain things, or even manually.

3 http://opensource.adobe.com

http://opensource.adobe.com

59D e s i g n i n g T o o l s

Periphery

The analysis has shown that the designer’s work also consists of a lot of
important peripheral activities. Even though the tool should focus on what
it does best, the tool maker should be aware of the context of use. The tool
has to function in day to day’s work and not present a stumbling block
when the designer needs to transition from one activity to another.

For example, the tool should allow easy sharing with other stakeholders
without lengthy instructions and without the need of a licensed copy of the
tool. It should have simple means to directly present the design, without
distracting user interface elements. It should allow the designer to include
notes and documentation, for others and for himself. At the end of the
process, the work should be archivable in a way that is retrievable even
after years.

3.4 Conclusion

As to be expected, there is not the one set of criteria that defines a good
tool and therefore the guidelines are rather broad. The tool maker must
be very aware of the purpose of the tool and the role it will play in the de-
signer’s work. What is the main focus of the tool and which problem does it
solve? Is it a core tool or just a utility? Is it a composition or an exploration
tool? Which amount of learning can be justified? And how can it fit into the
landscape of existing tools?

These questions need to be assessed carefully and the tool designed ac-
cordingly. The next chapters will present two tools that will be approached
in this manner. Chapter 4 describes a concept of an informal sketching
tool, and chapter 5 describes a practical technology tool that is actively
being developed.

60 Design Tools Design

61T o o l I : S k e t c h b o o k

Tool I:
Sketchbook

This chapter presents a concept for a tool named Sketchbook. It is an
answer to the first gap discovered in tool support for physical interaction
designers. Sketchbook aims to support designer in the early conceptual
and sketching stages by providing structure and simple interactivity to the
chaos of physical sketching work.

As opposed to the real-world use case in chapter 5, the approach here is
experimental. The tool design is not restricted by real budget or technologi-
cal constraints, to give room to new interface design ideas and an explora-
tion of the guidelines established in the previous chapter.

4.1 The Need

The analysis in chapter 2 identified a gap in the tool support for the first
stages in the process of designing physical interactions. It provokes the
question whether there is a need to fill this gap with an appropriate tool, or
whether there is a good reason for this gap.

The case of GUI design

Let’s first take a look at the more established area of GUI design. Here, the
initial concept phase is often done with the arrangement of Post-It-note on
a wall and hand sketches on paper. These tools are very efficient and effec-
tive and match very well with the medium that is to be designed (the in-

4

62 Design Tools Design

teractive screen). Even simple interactions can effectively be sketched with
the so-called paper prototyping method, where parts of the paper sketch
are exchanged in response to the test person’s actions (using a Wizard-of-
Oz human computer). For more advanced or less conventional interfac-
es many software tools are available to make quick and fully interactive
sketches (e.g., Adobe Flash). Because of the similarity of the medium, the
transition between the off-screen and the on-screen is quite fluent.

Nevertheless, even these earliest-stage paper sketches can benefit from
a transfer to a software tool, as DENIM shows (chapter 2.5). It alleviates
some of the inherent problems of physical paper, while trying to conserve
its advantages. Drawings are now digitalized, they can be easily modified,
structured, shared, refined – and made interactive. Why then is DENIM
not widely used by GUI designers? Mostly because, even though it is fully
functioning, it is a research project and as such not completely finished
and no longer supported. Its user interface is unconventional and requires
learning. Commercial tools are adopting more and more of the early-stage
spectrum, as in iRise’s scenario functionality, but they are not as radical as
DENIM. Another good reason for a slow adoption could be that paper is
actually still better than a software tool. Its material properties are nicer,
it is calm, focussed, direct, very high resolution and extremely flexible (see
also my analysis in Knörig, 2006, ch. 4.2). It cannot be easily shared over
distances, but it is superior in supporting collaboration on location1. And
the cost of digitalization is not so high because the next refinement stage
requires the creation of a new document anyway.

Thus, all in all the advantages of using a software tool like DENIM for
GUI design are not overly convincing at this point (but would be more so
if it was perfected in a commercial product). Paper is sufficiently easy to
handle and in some aspects unmatched by software tools, and more impor-
tantly, it mimics the design medium very well.

Sketching physical interactions

So how can this realization be transferred to the realm of physical inter-
action design? The main difference, as laid out in chapter 2.4, is the expo-
nentially growing freedom and complexity. GUIs can be simulated in most

1 There actually exists another research project, the “Designer’s Out-
post”, which takes DENIM to a digital whiteboard with physical Post-It
notes (Klemmer et al., 2001).
http://dub.washington.edu:2007/projects/outpost

http://dub.washington.edu:2007/projects/outpost

63T o o l I : S k e t c h b o o k

cases by a succession of drawings on paper, but what about an alarm clock
that drives out of reach when you try to snooze it2? A pencil sketch can be
used to capture the idea, but to make it experienceable the sketch needs
to resemble the design medium more. Therefore, designers will often build
rough bricolages made of any available material to explore the idea and get
a sense of what the object would be like. They also enact scenarios with
these bricolages and record them on video, again to learn more about the
created experience and to make it discussable with others. It is important
that sketching at this stage is quick and fluent.

Current difficulties

These methods are quite effective in evoking the intended experiences
and help the designer to go on, but compared to GUI sketches they have
some disadvantages. Firstly, they are usually not interactive and the Wiz-
ard-of-Oz technique is not practical for testing. Furthermore, unlike draw-
ings they are difficult to document and archive, because they take up a lot
of space and need additional written explanation. They are also difficult to
rework and refine, because they cannot easily be copied and, depending on
the material, modified. Finally, because of their often pointed nature, they
tend to divert the attention from a systematic view so that the designer
might overlook side aspects.

While a chaotic sketching situation is good and appreciated, these sketch-
es need to be transferred into a concrete and more structured design at
some point. This requires the designer to review the created bricolages and
videos and refine them in drawings and texts. It is difficult to keep the con-
nection between all these materials and to stay on top of the evolution of
the design. The chaos at this point is detrimental to the design process, be-
cause important decisions and ideas might get lost, and problems or gaps
remain undiscovered. In other words, there is a discrepancy between the
messy nature of the plentiful sketches and their synthesis into a coherent
concept. This transition requires a thoughtful approach that is not always
opportune in the midst of the process.

Opportunity

A new tool should seek to make this transition more conscious and help
the designer to transfer his sketches and ideas into a sound design. The tool

2 Clocky. http://www.nandahome.com/products/clocky

64 Design Tools Design

should allow the collection and capturing of sketches, where the experien-
tial qualities of the sketches should be retained as far as possible.

It should then accompany a thoughtful continuation of the design pro-
cess, and provide the ability to compare designs and refine them, to explore
variants and alternatives, and to enrich it with context. This would support
the design of physical interactions in a similarly concerted way as it is now
in GUI design.

4.2 Basic concept

The basic idea for the tool, tentatively called Sketchbook, is to provide a
place for collecting design artifacts where they can be structured and in-
teractively experienced. It accompanies the established sketching methods
and acts as a central hub for the design activities. Both structuring and
interactivity start out informally and in a sketchy fashion, and can gradu-
ally be formalized. A similar approach is taken by the concept of Dow et
al. (2006) for the design of ubiquitous computing applications. This way
the tool supports the design along the conceptual phase and well into the
sketching phase (Figure 4.1).

Sketches will further be done in all kinds of bricolage materials, because
the bodily experience is crucial. But structured thinking is better done on a
plane, drawing with a pen on paper or at a computer. This is where we have
acquired the most skills and the most control in externalizing our thoughts
and reflecting on them. It is therefore that it makes sense to bring the
sketches to the plane where they can be arranged and reflected on.

The designer continuously builds a digital sketchbook that contains semi-
structured, interactive representations of the design alternatives. Non-dig-
ital sketches are digitalized as photographs, scans, or videos, and embed-
ded into the sketchbook alongside with digital material such as drawings
and 3d models. The tool then lets the designer assemble simple scenarios
and storyboards from this material to explore their validity. He might add
variations to the story and enrich it with contextual material. The stories
can be tried out interactively by others. Several alternatives are compared
and some are rejected. As the design progresses, he refines them to cover
more use cases and side activities, gradually formalizing the design.

Through this process the sketchbook evolves into an interactive specifi-
cation of the design, with rich contextual clues. The complete evolution is

65T o o l I : S k e t c h b o o k

recorded, with decisions and earlier versions. For the further design pro-
cess the sketchbook functions as a guide and documentation, also for the
collaboration with other stakeholders and disciplines.

4.3 Elements of Sketchbook

A walk-through will show several aspects of using the Sketchbook soft-
ware. To illustrate the use case, I have chosen a mobile phone project of
mine, the Dynamic Knobs (Hemmert et al., 2008). It is a phone featuring
a new kind of physical interaction: It uses change of shape (a knob) to per-
manently display a change of state. It is a true tangible user interface in the
sense that digital information has a tangible expression that is both output
and input. The knob reveals itself when the phone has received, e.g., a text
message, and the user can react to it by pressing precisely that knob.

Collection

The standard way to start using a sketchbook would be by collecting as-
sets. These could be any kind of digital material, like photos, videos, PDF
documents, links to web sites, 3d models, etc. Physical material needs to
be digitalized with photos, videos, or scans. Figure 4.2 is showing a col-
lection of inspirational photographs that were collected during the initial
brainstorming phase to set the theme of the design. In this case, they are

Figure 4.1: Sketchbook fills the initial gap

66 Design Tools Design

all related to the phenomenon of shape change.
The collected items are stored in folders that are lined up at the bottom of

the sketch area. These folders are freely definable and separate the collec-
tions into general categories like inspiration, context, or sketches. Within
a folder contents can be tagged to create clusters for easier navigation and
filtering (in this case we have metaphors, technologies, and concepts). Ad-
ditional comments can be added to individual items.

The sketch area always has a very tangible feel. Items can be freely ar-
ranged, positioned and scaled so support spatial structuring. This way,
items can quickly be sorted and related to each other in an informal way, as
in the physical world. It relieves the designer from making decisions that
are not clear to him yet, and enables the use of spatial memory for orienta-
tion and retrieval.

In case the collection outgrows the available screen space, further en-
hancements of the interaction principles might be borrowed from other

Figure 4.2: Showing a collection of assets

67T o o l I : S k e t c h b o o k

projects. The stacking metaphor from the physical desktop simulation
BumpTop Desktop3 (Agarawala & Balakrishnan, 2006), as well as a Zoom-
ing UI4 (Bederson et al., 1996) are feasible techniques.

First sketches

From the collection of material the designer can start assembling the first
sketches. These are loosely defined graphs where the items are arranged in
a spatial sequence and may be connected with arrows. Comments can be
added to explain what is happening. Figure 4.3 shows a simple interaction
sequence that was created from a physical paper sketch created before. This
simple assembly already presents an advantage to the mere paper version.
It allows a quick and comfortable documentation of an idea that would

3 http://www.bumptop.com

4 http://en.wikipedia.org/wiki/Zooming_user_interface

Figure 4.3: Starting with a simple, informal story

ttp://www.bumptop.com
http://en.wikipedia.org/wiki/Zooming_user_interface

68 Design Tools Design

otherwise have to be done in a special illustration. The presentation func-
tionality (shown later) make the sketch experienceable.

Sketchbook also provides prominent support of a very central design
behavior that is only insufficiently supported with keeping separate files
– variations. They are collected in easy reach on the left side of the screen,
for quick switching and creation of new alternatives. Miniature representa-
tions of the sketch make them quickly identifiable.

Interaction notation

Building on the first simple interaction sketches, the designer can now
apply additional graphical notation to further define the interactions. The
created diagrams are essentially state-transition-diagrams: The blocks de-
fine the different states that the object can have or that the world is in, the
arrows define the transition from one state to another.

Through adding syntax, the diagram becomes semantically richer. The
transitions are what interaction design is mostly about and therefore need
to be defined in more detail. Transitions are events that lead to a change of
state. They can be caused by the user, the object itself (e.g., a timed alarm),
or other external parties (e.g., the network). Another way to look at it would
be an input-output-cycle, but this view is too rigid. It could be argued that
also the state-transition-diagram is too narrow, especially with reference
to Merleau-Ponty’s theories of experience (1945) which shows that sens-
ing and doing cannot cannot be separated. The notation here provides a
practical way to design interactions in an easy way. As will be shown, the
language is flexible enough to describe more complex interactions. It must
also be remembered that the sketchbook is used as a complementary tool
to physical sketches, whose experiential qualities cannot be captured in a
visual representation.

Figure 4.4 shows the first step of how the example is transformed into a
more detailed description. The visual language has to answer several ques-
tions. What is happening and how? This is shown in the imagery and de-
scribed in the text box. Who causes the change (actor)? This is denoted by
the shape of the event, specifically the notch in the event circle. Finally,
when does it happen (time)? This is answered by the shape of the arrow.
The break before the event denotes that nothing will happen automatically
if the event is not actively effected, and the straight line afterwards means
that the next state is reached immediately after the event. The fact that
these separate concerns of what/how–who–when are graphically repre-

69T o o l I : S k e t c h b o o k

sented in different ways gives room for further variation within each.
Figure 4.5 shows a more complex diagram that goes into more detail on

some of the interactions: The phone is initially in the pocket – a network
event reaches it while the owner is playing soccer – the knob stands out – it
is felt through the pocket – the phone is taken out and the message is pre-
viewed – the user is taking action. Through continuous refinement like this
the designer can evolve stories without the need to program or formalize
anything, yet with a meaningful structure.

The resulting diagram slightly looks like a comic strip. This is intentional,
because they are very powerful in conveying a narrative on a small area.
Further comic design principles like balloons or overlaid panels could be
borrowed to enhance the diagram , e.g., as in the comic creation software
Comic Life5. There is also related the notion of “design comics” which refers

5 http://plasq.com/comiclife

Figure 4.4: Adding a simple interaction

http://plasq.com/comiclife/

70 Design Tools Design

to using comics to illustrate design scenarios.6

As the diagrams grow more complex, it could be helpful to borrow the
level-of-detail-zoom from DENIM. The diagram could be separated into
modules that appear when zoomed out, and explode into the individual
elements when zoomed in.

Context

Unlike GUIs, the situation in which a physical interface product is used
is very dynamic. The user carries it around and might use it on-the-go in
different places, not just at the desk. This requires the designer to explore
the possible contexts and integrate them into the scenarios. In his sketch-
book, he can simply paste contextual media into the diagram, and associ-
ate people, places, activities, and situations with it. Figure 4.6 shows how

6 http://en.wikipedia.org/wiki/Design_comics

Figure 4.5: A more detailed interaction scenario

http://en.wikipedia.org/wiki/Design_comics

71T o o l I : S k e t c h b o o k

the designer brings a context video to the front to remind himself of the
scenario.

History

The design decisions that have been taken over the course of using Sketch-
book are stored in a transparent version repository. Figure 4.7 shows how
the decision history can be browsed after opening it from the stories bar on
the left. Every story created for the project is traced here. The yellow verti-
cal line show the current point in time so that it is clear which stories have
been rejected along the process. A fish-eye zoom brings the last week into
focus and the user has selected one of the stories to look into the changes
that have been made for this particular one. He could now bring back re-
jected stories or compare different versions, much like in a code version
repository.

Figure 4.6: Enriching the story with context

72 Design Tools Design

Presentation

A story can be presented at any time by switching to the presentation
view (Figure 4.8). This allows the designer and others to experience an idea
interactively in a click-through-manner. The current step is shown across
the full screen, with all distracting elements from the design view hidden.
The user can now click through the story by choosing the path to follow. At
the bottom the accompanying description is displayed along with a simple
web-browser-like navigation. The presentation view also supports quick
annotation of the design through little sticky notes.

The presentation is simple, yet effective. It lets the designer easily switch
the perspective from fiddling with the design to experiencing it from a us-
er’s point of view. This helps him to always be reminded of the experience
he is creating and reinforces Schön’s seeing-drawing-seeing-cycle.

Figure 4.7: Reviewing the design history

73T o o l I : S k e t c h b o o k

Logic

At this point the designer might want to move on to further specify the
design in terms of programming logic. The mere diagram is good for initial
storyboarding, but will eventually grow beyond maintainability. As the de-
sign process is nearing the prototyping stage, it would be helpful to turn
the sketches into a more programming-like notation.

Sketchbook supports this through gradually adding programmability.
As a first step the user needs to describe the elements of the world in an
object-oriented way (Figure 4.9), i.e. a hierarchy of objects with properties
and actions that can be performed on them. This becomes more powerful
when the corresponding sketch is a vector graphic where individual graphi-
cal elements can be assigned to the object tree.

With this description of the world the designer can now go back to the
diagram and add programming logic to it. Figure 4.10 shows how state in-

Figure 4.8: Presentation view with annotation

74 Design Tools Design

formation is added in the left drawer and the interaction logic in the right
drawer. The programming can be done semi-graphically, similar to that of
Scratch (see chapter 2.5). The script’s basic building blocks follow the dia-
gram metaphor: ‘on’ defines the event, and ‘do’ transforms the state into
a new one. Further language elements like conditions and loops are avail-
able. The programming objects are those that were defined in the object
hierarchy and it is possible to create simple animations through demon-
stration. The scripting language could be further extended into the direc-
tion of Scratch to allow more complex animation. However, the idea is to
stay state-based. Nevertheless, the programming blocks help to simplify
the graph.

The addition of formalized logic buys us two things: Firstly, the presenta-
tion becomes more interactive and more meaningful. Figure 4.11 shows
how the presentation is enhanced. The user’s action can now contain di-
rectly interactive parts instead of just navigating through the diagram. It

Figure 4.9: Adding object-oriented knowledge about the world

75T o o l I : S k e t c h b o o k

is also clearer what the action actually does and how it transforms the ob-
jects’ states.

Secondly, the way is paved to move on directly with prototyping. The code
that is created here could be exported to different prototyping platforms.
The ideal partner would be d.tools (see chapter 2.5), because it follows a
similar programming metaphor. The states and transitions could be con-
served and the designer would only need to match sketchbook objects with
the physical widgets available in the d.tools toolkit, and could immediately
build a fully functioning electronic prototype.

Figure 4.10: State-based programming of the interaction

76 Design Tools Design

Figure 4.11: Enhanced interactive presentation

77T o o l I : S k e t c h b o o k

78 Design Tools Design

79T o o l I I : F r i t z i n g

Tool II:
Fritzing

This chapter presents a study of the practical design considerations for a
tool that I have co-developed from inception to the release of several ver-
sions1. As a balance to the previous chapter, it discusses a complete real-
world use case. The design of the tool was therefore not so much guided
by the vision to create a revolutionary user interface design, but rather
to create a fully functioning, practical tool for designers – with the given
resources. These constraints require pragmatic decisions and a constant
evaluation of what is the most effective, rather than what is the most in-
teresting. As a result, Fritzing has become a highly useful tool.

5.1 The Need

The idea for Fritzing resulted from a dissatisfaction with the fidelity of
current physical interaction design prototypes. In recent years, more and
more designers have experimented with physical interactions. Before, it
was often reserved to HCI researchers who had enough technological un-
derstanding. With the widespread availability of simple micro-controller

1 DISCLAIMER: The Fritzing project is a research project at the Interac-
tion Design Lab of FH Potsdam, funded by the Brandenburg Ministry of Sci-
ence, Research and Culture. Between my Master studies I worked on Fritzing
as the project lead, under supervision of Prof. Reto Wettach. I was respon-
sible for the overall concept, the interaction design, the development and
the web site. This chapter is a critical discussion of the work carried out
in that time, in the light of the presented tool design guidelines.

5

80 Design Tools DesignFigure 5.2: A typical breadboard-based prototype

81T o o l I I : F r i t z i n g

platforms such as BasicStamp, Arduino, and Wiring,
and the ideas and concepts developed at schools like
the Interaction Design Institute Ivrea, physical inter-
action design could establish itself quickly as a design
discipline.

Current situation

The Arduino platform (Figure 5.1) proved to be the
most successful tool in this regard, because it struck
the best balance of simplicity, power, cost and com-
munity (Mellis et al., 2007). From its release around
2005, it quickly became the standard tool among
designers, but also artists and electronics hobbyists,
with far more than 10,000 sold and uncountable cus-
tom-made ones. The main contribution of this tool was that it for the first
time enabled a broad base of designers to work with electronics, to use it
as a material almost like wood and metal. Hardly any knowledge of elec-
tronics need to be learned to make a light blink, sense the physical world
through a range of sensors, and drive motors.

Thus, designers can nowadays rather easily build prototypes of their
physical interaction ideas, and depending on their skills these can become
astonishingly advanced. The limitation with the current state is the level
of fidelity that these prototypes can achieve. A prototype is usually built in
the following manner: A professionally produced Arduino functions as the
heart and contains the logic. Via wires it is connected
to a breadboard, which is a simple standardized plas-
tic board with interconnected plugs. This breadboard
contains the circuit, an array of electronic parts and
wires plugged into it manually (Figure 5.2). The ad-
vantage of the breadboard is that it perfectly suits the
working style of designers: Simply try and re-try and
continuously refine until satisfaction – sketching in
hardware.

Current problems

The disadvantage is obvious: The prototypes look
messy, they are big and clunky, and easily fall apart.
Presenting them to customers or in an exhibition is

Figure 5.1: Arduino micro-controller
Photo by Nicholas Zambetti

Figure 5.3: Stripboard (front & back)
Wikimedia Commons

82 Design Tools Design

risky and often results in problems. Also, the charm of looking like it’s
fresh from the lab only goes so far. This can be compensated partly by the
use of stripboards, but they are much more cumbersome to use (Figure
5.3). Another problem is documentation: Taking photographs or making
hand-drawings are poor solutions and make sharing with peers difficult.
And even finished circuits are often taken apart to reuse components.

In the short time of a few years, designers have already reached limits
in their work with electronics. If they want to move beyond, they current-
ly need to hire an engineer or learn using professional engineering tools
themselves. As this requires a thorough foundation in engineering, this is
reserved to few and also diverts their time from the design work.

Opportunity

Essentially, designers are missing support in what electrical engineers
are calling electronic design automation (EDA). This category of tools lets
the engineer design an electronic circuit and then generate the data nec-
essary to produce printed circuit boards (PCBs) from it (Figure 5.4). This
is the world-wide professional standard for designing, documenting, and
producing electronics.

Therefore, the next logical step in supporting physical interaction design-
ers is to give them an EDA tool – with a designerly twist. Such a tool can fill
the gap identified in chapter 2 (Figure 5.5), as an electronic analogy to what
Adobe Dreamweaver is for designing web pages.

Figure 5.4: PCB panel

83T o o l I I : F r i t z i n g

5.2 The Focus

With the given problem and a general idea for a tool, the question is what
kind of tool it will be like for the designer, and which core competence it
should provide. We start out by exploring the implications that an EDA
tool could have for the current situation, and later bring them into per-
spective of what is the most important functionality and how others could
be situated around it.

Carving out the territory

As described, the original motivation was to move the designer closer to a
position of a producer, i.e., to enable him to create higher-fidelity artifacts.
The standard for this is the PCB, so the first requirement is to output the
necessary data to have the PCB produced externally or in the in-house lab.
Since the current mode of working with breadboards should be conserved,
the tool needs to provide a bridge between breadboard use and PCB layout.
This observation resulted in the idea to create a graphical editor that lets
the designer replicate his breadboard sketch on the screen, and semi-auto-
matically guide him through the PCB-making process from there.

Once the designer has recreated his circuit with such a graphical editor,
it only needs little additional information like a description and part infor-
mation (the “bill of materials”) and the project’s electronics would be docu-
mented and becomes archivable. There is no longer the need to be overly
careful with the original breadboard, as it now can be recreated from the
documentation at any time.

Figure 5.5: Fritzing fills part of the production gap

84 Design Tools Design

If the documentation is done right, the file format defines a standard
that can also be shared with others and support collaboration. If combined
with the source code that runs on the micro-controller, it would be the
complete blueprint for the design. It would pave the way for open-source
hardware, and an online community could be built around it specifically
targeted at designers. Besides openly sharing designs, the web site could
provide a platform for members to share their general knowledge in using
electronics for design. Some of this knowledge could even be fed back into
the tool itself.

Another use case that follows from this is to support the learning of elec-
tronics through providing tutorials and examples. Likewise, the tool could
be used for teaching and have additional features for demonstrations on a
projector. For example, a schematic view could automatically be generated
in parallel.

More advanced features could allow the simulation of circuits on the
computer, the support for product design by providing 3d-measurements
of the PCB, or the experimentation with other circuit materials such as
cloth.

Refocusing

This brief exploration shows how the concept for a tool leads to a wealth
of use cases and interesting related features. A tool automatically gives rise
to its own little ecosystem that can be actively grown, but in the beginning
it is important to focus the resources and determine the main contribu-
tion. In the case of Fritzing, this was identified as the easy ability to make
PCBs, because it provides the greatest tangible benefit to the designer. The
tool helps him to achieve something necessary that he could not, or only
with great effort, achieve otherwise. The core idea of taking the user from
his breadboard prototype to professional PCB production was then illus-
trated as a memorable comic strip (Figure 5.6).

The other possible features are chosen by comparing benefit with cost.
Documentation basically comes for free, and the careful design of the file
format provides numerous other benefits such as compatibility and script-
ability. Greater costs are involved with a simple sharing functionality, as
it means finding a way to deal with the endless variations and versions of
electronic parts. However, easy sharing is the foundation of many other
benefits and is therefore a feature that needs to be integrated from the
start.

85T o o l I I : F r i t z i n g

Building an online community is central to making the tool known, but
it is also an important way to learn. Especially when it comes to the use of
technology, designers prefer to learn from how others have done some-
thing, rather than reading a book on the topic. They can benefit greatly
from a community that shares their examples.

The other features can be developed over time, and can partly be grown
by the online community. Learning and teaching are side-topics that can
be kept in mind, and advanced topics might be attended to later as the
need or the opportunity arises. Simulation, for example, might seem very
powerful at first sight, but would require an enormous effort. And because
designers need to get hands-one with the breadboard anyway, its benefit is
questionable.

Fitting into the landscape

A new tool is usually not defining its own new context, instead it has to
blend into an existing environment of other tools and processes. The situ-
ation for Fritzing was already briefly described: It sits at the edge between
the use of micro-controllers in design and the use of EDA software in engi-
neering. For the former, Arduino provides an ideal opportunity to build on.
It is a mature tool that is respected and well-established among physical
interaction designers. Also, it is easy to learn and by its design lends itself
well to an integration with Fritzing: The concept of the “Arduino shield”, a
standard for an extension PCB that fits on top of the Arduino (Figure 5.7),
can be used as a simple default for beginners. Arduino thus is the perfect
starting point, but Fritzing should not become too tightly integrated, and
stay open for other uses. Additionally, Arduino is a great role model for a

Figure 5.6: How Fritzing works
Illustration by Myriel Milicevic

86 Design Tools Design

successful tool ecosystem. It itself followed the model of Processing, and
Fritzing will also benefit from joining the team due to the community that
already exists.

At the other end, a research into the market of existing EDA software
showed a very wide range of tools, with high-end commercial products,
freeware provided by and for hobbyists, learning kits targeted at schools,
etc. Very interesting proved to be the freeware and open-source products,
for two reasons: Firstly, designers would not pay a high license fee to use a
product that is only at the border of their needs, and secondly, these tools
could be employed by Fritzing to do the heavy lifting of the PCB genera-
tion process. The Fritzing team could then focus on its strength, the user
interface design.

The most popular EDA tool among technically advanced designers is EA-
GLE (Figure 5.8), mostly because it is relatively cheap and has a freeware
license for limited use. Even though it is not open-source, it can be inter-
faced with through a relatively simple and powerful scripting language. We
therefore decided to start with building our efforts on EAGLE, and later
move towards a closer integration with one of the open-source tools.

5.3 The Design

Now that the focus and the environment of the tool have been defined,
the design and development of the tool can be approached. Fritzing has

Figure 5.7: Arduino prototyping shield
Photo by Limor Fried (ladyada)

Figure 5.8: EAGLE (showing a PCB view)
Cadsoft

87T o o l I I : F r i t z i n g

been developed under practical constraints and budget restrictions, and
is still at an early stage. Not all of the following aspects derived from the
guidelines in chapter 3 are therefore present in the latest available ver-
sion.

Low threshold

The main challenge of the tool is to make complex technology usable by
non-technologists. Fritzing was therefore designed to integrate seamlessly
with the current practice and process and pick up the designer right where
he is left alone. It is a top priority that the tool can be used by anybody

Figure 5.9: Sketch of the Fritzing GUI
By Dirk van Ooosterbosch

88 Design Tools Design

who just knows how to make an LED blink with Arduino. This is achieved
by a graphical editor that resembles the real world situation in look and
feel (Figure 5.9). Parts that look like their real counterparts can be dragged
from a simple parts palette onto a large sketch area. They can be rearranged
and wires can be drawn among them, until the virtual sketch is identical
with the physical one. This “breadboard view” does not exist in professional
EDA packages, but it is sufficient for the electronics amateur, providing a
simple, safe, and playful environment.

An idea that takes this even further is the blueprint function. Users could
take a top-view photograph of their physical sketch and display it inside
Fritzing as a semi-transparent overlay. This would ease its graphical recre-
ation even more (Figure 5.10).

At this stage the documentation would be completed. If the designer in-
tends to turn it into a PCB, he could switch to the “PCB view” where all
elements are already placed. He can then choose a template for the PCB
(e.g., the Arduino shield), rearrange the elements, and the software would
automatically take care of the rest. Even though there are endless options
that could be tweaked for this step, we learned that even engineers usually

Figure 5.10: Using a photo as blueprint
By Dirk van Ooosterbosch

89T o o l I I : F r i t z i n g

resort to the values that they know will work, so we simply provide some
sensible defaults.

A more advanced concept for lowering the threshold is that of modules,
pre-composed functional entities for frequently used functionalities such
as Bluetooth communication or motion sensing. Modules would essential-
ly be their own Fritzing file, so that a project could be recursively built from
modules and sub-modules. For beginners, it would mean even less techni-
cal knowledge necessary to explore electronics in their designs.

High ceiling

The described procedure already covers a large percentage of use cases.
If the designer wants to move on to more advanced uses, there are several
ways inside and outside of Fritzing. A simple way are alternative templates,
for instance, one that embeds the whole Arduino circuit, or ones for other
Arduino versions like the Arduino Mini. If the templates are not sufficient,
a vector graphic can be imported to provide the shape of the PCB.

Fritzing also tries to go a new way for the part library. In current EDA
tools these are highly complex and make it very difficult for beginners to

Figure 5.11: Browsing for the right part in EAGLE
Cadsoft

90 Design Tools Design

pick the right part (Figure 5.11). Fritzing defines its own simple standard
and makes use of part families. There is only one resistor in the library
rather than hundreds of specialised ones, in the configuration that is used
90% of the time. If the user needs a more specific one, he can change this in
the properties of the part. And if his specific choice is not available, he can
use the part editor to make his own. The part editor simply takes graphics
files created with other applications, and lets the user define some meta-
data and the position of connectors.

If the functionality provided in Fritzing is not sufficient, the created
designs can easily be exported to formats used in professional tools. As
Fritzing makes use of one of these tools for the backend processing, the
integration with this tool is quite close. The first difficult steps are then
already taken, and the designer can adjust individual details. Such a transi-
tion from a simplified tool to a full-blown professional one is usually very
steep. In order to ease it, Fritzing will contain a third “schematics view”,
that lets the user gradually get familiar with the professionals’ notation
system for circuits (Figure 5.12).

Wide walls

The call for wide walls is answered by loosening the rules of how a circuit
can be assembled. Traditional EDA tools are rather strict and only allow
compositions that are ‘correct’ in an engineering sense. Designers however
often do not adhere to these rules, be it because of a lack of knowledge or
creative experimentation. Fritzing supports these alternative approaches
and even suggests them. For example, it allows the user to wire up elements
without constraints, so that the leg of an LED can be bent awkwardly and
directly connects to a loose wire.

Another important freedom is given in the choice of composition parts.
A designer’s circuit may contain ‘hacked’ and repurposed electronics like a
toy puppet or a Nintendo Wii controller, for which a traditional EDA has no
representation. For the designer, however, it is an essential part of the proj-
ect that needs to be documented. In Fritzing, these elements can therefore
easily be created with the part editor. Simply take a photograph or draw the
element and define its connectors, and it can be used in the sketch. (**)

Exploration and experimentation

These aspects are not quite as important in Fritzing, because it is a tool
that is rather used towards the end of the design process. Also, exploration

VS+

R1 R2

Q1 Q2

Figure 5.12: Sche-
matic notation of
a circuit
Wikimedia Commons

Figure 5.14: Inte-
grated examples
Fritzing Alpha

91T o o l I I : F r i t z i n g

of electronics has to happen in the physical world.
This can be furthered by Fritzing by functioning as
a learning and sharing platform for the community.
To get it started, the software will contain numerous
example circuits that showcase very simple setups
as well as advanced circuits (Figure 5.14). This gives
users a safe way to learn, to discover what Fritzing
has to offer, and to build their own designs on au-
thoritative work.

Further support for exploration is instilled by the
abstractness of the part library. Users are not forced
to search and select a specific resistor, they can just
pick the one resistor and become more specific later.
This principle could be taken to an extreme where
the user can be as unspecific as picking a “light” ele-
ment, and only later decide if it is an LED or other
type of light source.

 Trustworthiness is given in part because Fritzing is publicly funded and
open-source. Within the tool, it supports standard mechanisms like an in-
finite undo stack, quick saving, and a project folder that can be archived. A
further aspect of trust is the tangibility of the graphical editor: The realistic
graphics and behavior give confidence and foreseeability.

Informality

The need for informality is also not as strong as in
an early-stage tool. Nevertheless, Fritzing supports
it by the already mentioned quasi-realistic graphical
editor. It lets the user place elements freely on the
infinitely large sketch area, without requiring them
to be connected to anything. Parts can also be ab-
stract, even representing hacked objects or concep-
tual entities. The user is quite free in his composi-
tion, unrestricted by formal requirements.

Furthermore, a note item lets him freely place text
notes on the sketch area and visually link them to an
element. This allows an informal documentation for
alerting others or reminding oneself of something
that can not be captured otherwise (Figure 5.15).

Figure 5.15: Informal annotation
Fritzing Alpha

Figure 5.14: Toy hacks can be docu-
mented in Fritzing
Photo by Danja Vasiliev

92 Design Tools Design

Collaboration and community

The sharing of electronics-based interaction designs is one of the key
benefits of Fritzing. As already described, this has not been easily possible
for designers before and Fritzing makes this for the first time efficient and
complete. Designers can start sharing with their peers to learn from an-
other, they can use it for asking help if they have technical problems, and
they can collaborate much easier with engineers.

Easy shareability is mainly made possible through a carefully designed
file format. Structural information and metadata are stored in a human-
readable XML format, and all graphics are stored in the SVG standard. A
project folder contains all the information that constitutes the project, in-
cluding every part description.

A tight integration with the web site will further enhance sharing. It will
be possible to upload a design with one click from within the tool, and be-
come part of an online gallery of fully documented projects (Figure 5.16).
Similarly, parts can be shared in an online library, and one could even think
of an RSS feed for new parts displayed inside of Fritzing.

Detailed control

Because the PCB is usually not visible to a product’s customer, it is not
a priority to provide easy control on its looks. If this is wished, the user
can design the shape in a vector graphics program. The same holds for the
graphical aspects of the PCB like the routing of traces and the silk print.
The cost of implementing it inside Fritzing would be too high, especially
since it would have to compete with professional graphics software that
designers are used to work with. This method is sufficiently easy and pow-
erful.

Tool appropriation

The room for appropriation is mainly opened by the possibility to add
custom parts to the library. As this is a central part of an EDA, the tool can
quickly develop a personal feel for its user.

Since it Fritzing is open-source, users can theoretically customise it as
much as they want, but this is very unlikely in a community that lacks the
necessary skills. We will therefore explore the need for customized hot-
keys, macros, and a scripting language, when there will actually be advanced
users. These features can relatively easily be added when the need arises.

Figure 5.16: Sketch
of an online proj-
ect documentation
By Hendrik Gäbler

93T o o l I I : F r i t z i n g

Aesthetics

For the graphical design we chose a look that is neither too technical nor
too playful. The quasi-realistic graphics are simplistic yet detailed and come
in a desaturated color palette. They transport the claim of a professional
tool for users who value aesthetics and design (Figure 5.17).

The core library of parts sets a high standard that is defined in a style
guide. Users are advised to follow this guide if they want to make their cus-
tom parts public. The graphics are high-resolution vector drawings, even
with translucent parts, so that sketches look good even when printed.

Fritzing also has its own identity, expressed in a logo, color and font.
They were chosen to harmonize with the family of Processing and Arduino
(Figure 5.18).

Flexibility

The tool leaves flexibility to the user by making use of open standards like
XML and SVG for the data it creates. Furthermore, it provides open inter-
faces for both import and export. Typical graphics formats can be imported
and exported to ensure high standards in visual design, and on a technical
level Fritzing will support import and export of other tools’ part definition
formats and also schematics and PCB descriptions. This openness allows

Figure 5.18: Fritzing
icon and logo
By Dirk v. Oosterbosch

D
i
e
c
i
m
i
l
a

A
r
d
u
i
n
o

T
X

L

P
W
R

R
X

I
C
S
P

1

AREF

GND

31
21
11
01
9
8

7
6
5
4
3
2
1

D
I
G
I
T
A
L

PWM

PWM

PWM

PWM

PWM

PWM

TX

0

RX

45
50

55
60

45
50

55
60

ABCDEFGHIJ

T
I
P
1
2
0

Figure 5.17: Fritzing aesthetic
By Dirk van Oosterbosch

94 Design Tools Design

the user to switch to another tool at any time if that tool is better or more
convenient for the job.

(The topics of focus, cost, and periphery are not treated separately here,
because they were covered within the other aspects.)

5.4 Development history

Agile development

When the focus and the basic concept were clear, the team started devel-
oping the tool and the web site was set up. As it was not clear for how long
the project would be funded, we decided on adopting a loose agile develop-
ment approach with short iteration cycles. The first fully functional alpha
release was made available only a few weeks after the development started.

Figure 5.19: The first five Fritzing releases

95T o o l I I : F r i t z i n g

(This was possible due to the powerful framework that Fritzing was built
on.) After that, a new release was published every three to four weeks, with
release number five at the end of the first funding round. This develop-
ment method proved to be very fruitful: It brought a lot of motivation to
the team, focussed the development on practical results, and allowed early
feedback from users. After every iteration the focus could be readjusted
and refined, which made it an effective design process. (Figure 5.19)

Experts participation

Before the development started, and again before the second round, we
held a kick-off-workshop with experts in physical interaction design from
Europe and the U.S. About twenty people with backgrounds in design, arts,
education, and technology were invited to work with the Fritzing team and
local students for two days. The program was constructed so that the ex-
ternal experts could present their own perspective on the subject, followed
by intense group brainstormings on Fritzing-related topics. At the end the

Figure 5.20: Fritzing kick-off workshop with experts
Arduino co-inventor Tom Igoe speaking (Photo by Jochen Fuchs)

96 Design Tools Design

Figure 5.21: Impressions from Fritzing workshops
Upper right: One of the more complex student’s eketches

Upper left: Marcus Paeschke etching the boards

Lower left: An etched board

Lower right: a happy student with a completely assembled Arduino shield

97T o o l I I : F r i t z i n g

results were presented and eagerly discussed. These workshops gave a good
indication of where the real problems and opportunities are, and produced
a lot of practical ideas. The optimistic spirit and high interest of the partici-
pants also provided another motivation for the team. (Figure 5.20)

Continuous testing

The environment of the university is an excellent opportunity for con-
tinuously testing the current state with students. Fritzing was given to an
undergraduate class in physical interaction design by Prof. Reto Wettach,
where they were asked to produce PCBs of their projects by the end of the
semester. With some assistance from the team, they were the guinea pigs
to try out very early versions of the software. Even though it was at times
painful to use, the overall process worked quite well. We gathered a lot of
helpful observations and feedback during the study in areas that were not
obvious. For example, understandability of the scope of the tool was a key
concern.

Workshops

With a later version we gave a workshop at an external place, in the phys-
ical computing class of Jan Sieber at the Bauhaus-University in Weimar.
This workshop was meant to evaluate if designers can go from minimal Ar-
duino knowledge to a self-produced PCB in two days. Fifteen students were
assisted by three tutors (one for electronics help, one for Fritzing, and one
for PCB making), and everybody with a concept had his own custom-made
Arduino shield at the end of the workshop. The self-production of the PCB
proved to be highly motivational for the students.

We will further expand the hosting of workshops because it eases ac-
ceptance with users who are otherwise uncomfortable or do not have all
the necessary equipment available to them. In turn, it gives us the chance
to learn first-hand from the users’ experiences. Every user is different in
his knowledge and requirements, so that there is always something new to
learn on how to make the tool work better for its users.

98 Design Tools Design

99B i b l i o g r a p h y

Bibliography

Abercrombie, Stanley & Glaser, Milton (1997).
Work, Life, Tools: The things we use to do the things we do. The Monacelli
Press, Inc.

Agarawala, Anand & Balakrishnan, Ravin (2006). Keepin’ it Real: Pushing
the Desktop Metaphor with Physics, Piles and the Pen. In Proceedings of
the SIGCHI Conference on Human Factors in Computing Systems. CHI
‘06. ACM, New York, NY, p. 1283-1292. http://www.bumptop.com

Alvarado, Christine (2000).
A natural sketching environment: Bringing the computer into early stages
of mechanical design. Master’s thesis, Massachusetts Institute of
Technology.

Bederson, Benjamin B., Hollan, James D., Perlin, Ken, Meyer, Jonathan,
Bacon, David & Furnas, George W. (1996). Pad++: A Zoomable
Graphical Sketchpad for Exploring Alternate Interface Physics. Journal of
Visual Languages and Computing, 7, pp. 3-31.

Boden, Margaret (2004).
The creative mind: myths and mechanisms. 2nd edition. London:
Routledge.

Brooks, Jr., Frederick P. (1977).
The computer scientist as toolsmith--Studies in interactive computer
graphics. In Information Processing 77, Proceedings of IFIP Congress

100 Design Tools Design

77, 625-634.

Brooks, Jr., Frederick P. (1994).
The Computer Scientist as Toolsmith II. Keynote/Newell Award address at
SIGGRAPH ‘94. Proc. of SIGGRAPH ’94, 28, 4: 281-287.

Buchenau, Marion & Suri, Jane F. (2000).
Experience prototyping. In Proceedings of the 3rd Conference on
Designing interactive Systems. DIS ‘00. ACM, New York, NY, 424-433.

Bush, Vannevar (1945).
As We May Think. In The Atlantic Monthly, July 1945. Available online
from, e.g., http://www.theatlantic.com/doc/194507/bush.

Buxton, Bill (2007).
Sketching User Experiences: Getting the Design Right and the Right Design.
Morgan Kaufmann.

Cook, Damon J. & Bailey, Brian P. (2005).
Designers’ use of paper and the implications for informal tools. In ACM
International Conference Proceeding Series, vol. 122. Computer-
Human Interaction Special Interest Group (CHISIG) of Australia, 1-10.

Cooper, Alan (1999).
The Inmates are Running the Asylum. SAMS.

Csikszentmihalyi, Mihaly (1996).
Creativity: flow and the psychology of discovery and invention. New York:
Harper Perennial.

Davis, Richard C., Colwell, Brien & Landay, James A. (2008).
K-Sketch: A “Kinetic” Sketch Pad for Novice Animators. In Proceedings of
the SIGCHI Conference on Human Factors in Computing Systems. CHI
‘08. ACM, New York, NY, 413-422. http://www.k-sketch.org

Dow, Steven, Saponas, T. Scott, Li, Yang, & Landay, James A. (2006).
External representations in ubiquitous computing design and the
implications for design tools. In Proceedings of the 6th Conference on

http://www.theatlantic.com/doc/194507/bush

101B i b l i o g r a p h y

Designing interactive Systems. DIS ‘06. ACM, New York, NY, 241-250.

Greenberg, Saul. (1993).
The Computer User as Toolsmith: the Use, Reuse, and Organization of
Computer-Based Tools. Cambridge University Press.

Hartmann, Björn, Klemmer, Scott R., Bernstein, Micahel, Abdulla, Leith,
Burr, Brendan, Robinson-Mosher, Avi & Gee, Jennifer (2006).
Reflective physical prototyping through integrated design, test, and analysis.
In Proceedings of ACM Symposium on User interface Software and
Technology. UIST ‘06. ACM, New York, NY, 299-308.
http://hci.stanford.edu/dtools

Hartmann, Björn, Abdulla, Leith, Mittal, Manas & Klemmer, Scott R
(2007).
Authoring sensor-based interactions by demonstration with direct
manipulation and pattern recognition. In Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems. CHI ‘07. ACM,
New York, NY, 145-154. http://hci.stanford.edu/exemplar

Hartmann, Björn, Doorley, Scott & Klemmer, Scott (2008).
Hacking, Mashing, Gluing: Understanding Opportunistic Design. IEEE
Pervasive Computing July-September 2008.

Hemmert, Fabian, Joost, Gesche, Knörig, André & Wettach, Reto (2008).
Dynamic knobs: shape change as a means of interaction on a mobile phone.
In CHI ‘08 Extended Abstracts on Human Factors in Computing
Systems. CHI ‘08. ACM, New York, NY, 2309-2314.

Hippel, Eric von (2005).
Democratizing Innovation. The MIT Press. Freely available online at
http://web.mit.edu/evhippel/www/democ1.htm.

Kaptelinin, Victor & Nardi, Bonnie A. (2006).
Acting with Technology: Activity Theory and Interaction Design. MIT Press.

Klemmer, Scott R., Newman, Mark W., Farrell, Ryan, Bilezikjian, Mark,
& Landay, James A. (2001).

102 Design Tools Design

The designers’ outpost: a tangible interface for collaborative web site. In
Proceedings of the 14th Annual ACM Symposium on User interface
Software and Technology. UIST ‘01. ACM, New York, NY, 1-10.
http://dub.washington.edu:2007/projects/outpost/

Knörig, André (2006).
Free the body and the mind will follow: An investigation into the role of
the human body in creativity, and its application to HCI. Diploma Thesis,
University of Applied Sciences Wedel, Germany. Available at http://
andreknoerig.de/projects/free-the-body

Li, Yang & Landay, James A. (2005).
Informal Prototyping of Continuous Graphical Interactions by
Demonstration. In Proceedings of the ACM Symposium on User
Interface Software and Technology. UIST 2005. ACM, New York, NY,
221-230.

Li, Yang & Landay, James A. (2008).
Activity-based prototyping of ubicomp applications for long-lived, everyday
human activities. In Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems. CHI ‘08. ACM, New York, NY, 1303-
1312. http://activitystudio.sourceforge.net

Lin, James, Newman, Mark J., Hong, Jason I. & Landay, James A. (2000).
DENIM: finding a tighter fit between tools and practice for Web site
design. In Proceedings of the SIGCHI Conference on Human Factors in
Computing Systems. CHI ‘00. ACM, New York, NY, 510-517.
http://dub.washington.edu:2007/denim

Löwgren, Jonas & Stolterman, Erik (2004).
Thoughtful interaction design: A design perspective on information
technology. The MIT Press.

Löwgren, Jonas (2008).
Interaction Design. Retrieved 9 July 2008 from Interaction-Design.org:
http://www.interaction-design.org/encyclopedia/interaction_design.
html

103B i b l i o g r a p h y

Mellis, David, Banzi, Massimo, Cuartielles, David & Igoe, Tom (2007).
Arduino: An Open Electronic Prototyping Platform. Alt CHI 2007.
http://www.arduino.cc

Merleau-Ponty, Maurice (1945). The Phenomenology of Perception. English
translation 1962. London, Routledge.

Moggridge, Bill (2006).
Designing Interactions. The MIT Press.

Myers, Brad A., Hudson, Scott E. & Pausch, Randy (2000).
Past, Present and Future of User Interface Software Tools. ACM
Transactions on Computer Human Interaction. March, 2000. 7(1),
3-28.

Pugh, Stuart (1990).
Total Design: Integrated Methods for Successful Product Engineering.
Addison-Wesley Publishing.

Reas, Casey & Fry, Ben (2007).
Processing: A Programming Handbook for Visual Designers and Artists.
MIT Press. http://www.processing.org

Resnick, Mitch, Myers, Brad, Nakakoji, Kumiyo, Shneiderman, Ben,
Pausch, Randy, Selker, Ted & Eisenberg, Mike (2005).
Design Principles for Tools to Support Creative Thinking. In NSF Workshop
Report on Creativity Support Tools. Published online at http://www.
cs.umd.edu/hcil/CST.

Schneider, Beat (2005).
Design - eine Einführung: Entwurf im sozialen, kulturellen und
wirtschaftlichen Kontext. Birkhäuser Verlag für Architektur.

Schön, Donald (1983).
The reflective practitioner: how professionals think in action. New York:
Basic Books.

Stolterman, Erik, McAtee, Jamie, Royer, David & Thandapani, Selvan

104 Design Tools Design

(2008)
Designerly Tools. Design Research Society Conference, Sheffield, 2008.

Svanæs, Dag (1999).
Understanding Interactivity: Steps to a Phenomenology of Human-
Computer Interaction. PhD Dissertation. Dept. of Computer and
Information Science, Norwegian University of Science and Technology.
Trondheim, Norway.

Terry, Michael, Mynatt, Elizabeth D., Nakakoji, Kumiyo & Yamamoto,
Yasuhiro (2004).
Variation in element and action: supporting simultaneous development
of alternative solutions. In Proceedings of the SIGCHI Conference on
Human Factors in Computing Systems. CHI ‘04. ACM, New York, NY,
711-718.

Winograd, Terry, Bennett, John, Young, Laura De & Hartfield, Brad
(eds.) (1996). Bringing Design to Software. Addison-Wesley Publishing.

Without Authors:

Eleven lessons: Managing design in eleven global companies (2007). Design
Council, UK. Retrieved from http://www.designcouncil.org.uk/
Documents/About%20design/Eleven%20Lessons/PDF%20Eleven%20
Lessons_complete_study.pdf

Eleven lessons: Managing design in eleven global companies: Desk research report
(2007). Design Council, UK. Retrieved from http://www.designcouncil.
org.uk/Documents/About%20design/Eleven%20Lessons/Desk%20
Research%20Report.pdf

tool. (2008). In Encyclopædia Britannica. Retrieved July 07, 2008, from
Encyclopædia Britannica Online: http://www.britannica.com/
EBchecked/topic/599411/tool

105B i b l i o g r a p h y

List of Figures

Figure 1.1: The influence of tools on the evolution of mankind............... 18
Drawing by Braldt Bralds.

Figure 1.2: Toolset of a Make-Up Artist.. 19
Photo by the Author

Figure 1.3: The pencil as a tool for exploring ideas.................................... 20
From Leonardo Da Vinci’s sketchbook, around 1500.

Figure 1.4: Radical black box design for a tv set... 22
Black 201 Television Set for Brion Vega, by Richard Sapper and
Marco Zanuso, 1969

Figure 1.5: Marble answering machine... 23
By Durrell Bishop (drawing by Jonas Lowgren)

Figure 2.1 (left): Various descriptions of the design process ..29
a) Top Left: Moggridge, 2006, p.730
b) Bottom Left: Loewgren & Stolterman, 2004, p.25
c) Top Right: Buxton, 2007, p.148, based on Pugh, 1990, p.75
d) Bottom Right: Design Council, 2007b, p.10

Figure 2.2: Map of design activities ... 30
Figure 2.4 (left): Sketching vs. Prototyping ... 33

Different levels of fidelity
Figure 2.3: The Sketch to Prototype Continuum.. 33

Buxton, 2007, p. 140
Figure 2.5: Interaction design... 36

Graphic Design, Product Design, Graphical User Interface Design,
Physical Interaction Design

Figure 2.6: Interaction flow editor.. 40
iRise Studio

106 Design Tools Design

Figure 2.8: Integrated documentation.. 40
iRise Studio

Figure 2.10: Sketching... 40
DENIM

Figure 2.7: Annotation during presentation.. 40
iRise Studio

Figure 2.9: Sketchy rendering... 40
Google SketchUp

Figure 2.11: Progressive refinement... 40
DENIM

Figure 2.12: Zoom levels.. 41
DENIM

Figure 2.13: Design-oriented API.. 42
Processing

Figure 2.15: Stage, actor, behavior.. 42
Scratch

Figure 2.17: Progr. by demonstration... 42
Exemplar

Figure 2.14: Timeline... 42
Adobe Flash

Figure 2.16: Visual progr. language... 42
Cycling74 Max

Figure 2.18: Physical simulation... 42
Phun

Figure 2.19: Transparent blueprint... 44
Adobe Dreamweaver

Figure 2.21: Input-output box... 44
Arduino

Figure 2.23: Integrated prototyping... 44
d.tools (Design view)

Figure 2.20: Design view vs. implementation view.................................... 44
Adobe Dreamweaver

Figure 2.22: Integrated prototyping... 44
d.tools (Workflow)

Figure 2.24: Integrated prototyping... 44
d.tools (Analysis view)

Figure 2.25: Activity-centered design..46
ActivityStudio

107B i b l i o g r a p h y

Figure 2.26: Matrix of interaction design tools.. 48
(Software tools only; research projects in light gray)

Figure 3.1: Preview and object styles..52
Adobe Illustrator

Figure 3.2: Integrated online sharing..53
Scratch

Figure 3.3: Custom-made tools of a ceramic craftsman............................. 55
Photo by Cory Lum

Figure 3.4: Tool aesthetics of different communities..56
Processing vs. Eclipse (web site and software)

Figure 4.1: Sketchbook fills the initial gap... 65
Figure 4.2: Showing a collection of assets...66
Figure 4.3: Starting with a simple, informal story...67
Figure 4.4: Adding a simple interaction...69
Figure 4.5: A more detailed interaction scenario..70
Figure 4.6: Enriching the story with context...71
Figure 4.7: Reviewing the design history..72
Figure 4.8: Presentation view with annotation..73
Figure 4.9: Adding object-oriented knowledge about the world...74
Figure 4.10: State-based programming of the interaction..75
Figure 4.11: Enhanced interactive presentation..76
Figure 5.2: A typical breadboard-based prototype..................................... 80
Figure 5.1: Arduino micro-controller...81

Photo by Nicholas Zambetti
Figure 5.3: Stripboard (front & back)...81

Wikimedia Commons
Figure 5.4: PCB panel..82
Figure 5.5: Fritzing fills part of the production gap................................... 83
Figure 5.6: How Fritzing works... 85

Illustration by Myriel Milicevic
Figure 5.7: Arduino prototyping shield...86

Photo by Limor Fried (ladyada)
Figure 5.8: EAGLE (showing a PCB view)..86

Cadsoft
Figure 5.9: Sketch of the Fritzing GUI...87

By Dirk van Ooosterbosch
Figure 5.10: Using a photo as blueprint...88

By Dirk van Ooosterbosch

108 Design Tools Design

Figure 5.11: Browsing for the right part in EAGLE.................................... 89
Cadsoft

Figure 5.12: Schematic notation of a circuit... 90
Wikimedia Commons

Figure 5.14: Integrated examples.. 90
Fritzing Alpha

Figure 5.14: Toy hacks can be documented in Fritzing.............................. 91
Photo by Danja Vasiliev

Figure 5.15: Informal annotation... 91
Fritzing Alpha

Figure 5.16: Sketch of an online project documentation........................... 92
By Hendrik Gäbler

Figure 5.17: Fritzing aesthetic.. 93
By Dirk van Oosterbosch

Figure 5.18: Fritzing icon and logo... 93
By Dirk v. Oosterbosch

Figure 5.19: The first five Fritzing releases... 94
Figure 5.20: Fritzing kick-off workshop with experts................................ 95

Arduino co-inventor Tom Igoe speaking (Photo by Jochen Fuchs)
Figure 5.21: Impressions from Fritzing workshops................................... 96

Upper right: One of the more complex student’s eketches
Upper left: Marcus Paeschke etching the boards
Lower left: An etched board
Lower right: a happy student with a completely assembled Arduino
shield

109B i b l i o g r a p h y

110 Design Tools Design

	Table of Contents
	Abstract
	Acknowledgments
	Eidesstattliche Erklärung
	Context
	1.1 Design Tools
	1.2 Computer as design tool
	1.3 (Physical) Interaction Design
	1.4 Research questions and goals
	1.5 Outline

	Analysis
	2.1 Models of the design process
	2.2 Design Activities
	Research
	Abstract
	Envision
	Sketch
	Present
	Select
	Prototype
	Test
	Produce
	Document

	2.3 Methods & Techniques
	2.4 Designing Physical Interactions
	2.5 Existing Tools
	Rapid prototyping for GUIs
	Sketchy rendering
	Early-stage sketching
	Exploring interactivity
	Production
	Design tools for PUIs

	2.6 Gaps

	Designing Tools
	3.1 Creativity
	Exploration and experimentation
	Low threshold, high ceiling, wide walls
	Informality
	Collaboration and community

	3.2 Craftsmanship
	Detailed control
	Tool appropriation
	Focus
	Aesthetics

	3.3 Practicality
	Cost
	Flexibility
	Periphery

	3.4 Conclusion

	Tool I: Sketchbook
	4.1 The Need
	The case of GUI design
	Sketching physical interactions
	Current difficulties
	Opportunity

	4.2 Basic concept
	4.3 Elements of Sketchbook
	Collection
	First sketches
	Interaction notation
	Context
	History
	Presentation
	Logic

	Tool II: Fritzing
	5.1 The Need
	Current situation
	Current problems
	Opportunity

	5.2 The Focus
	Carving out the territory
	Refocusing
	Fitting into the landscape

	5.3 The Design
	Low threshold
	High ceiling
	Wide walls
	Exploration and experimentation
	Informality
	Collaboration and community
	Detailed control
	Tool appropriation
	Aesthetics
	Flexibility

	5.4 Development history
	Agile development
	Experts participation
	Continuous testing
	Workshops

	Bibliography
	Bibliography
	Figure 1.1: The influence of tools on the evolution of mankind
	Drawing by Braldt Bralds.

	Figure 1.2: Toolset of a Make-Up Artist
	Photo by the Author

	Figure 1.3: The pencil as a tool for exploring ideas
	From Leonardo Da Vinci’s sketchbook, around 1500.

	Figure 1.4: Radical black box design for a tv set
	Black 201 Television Set for Brion Vega, by Richard Sapper and Marco Zanuso, 1969

	Figure 1.5: Marble answering machine
	By Durrell Bishop (drawing by Jonas Lowgren)

	Figure 2.1 (left): Various descriptions of the design process
	a) Top Left: Moggridge, 2006, p.730
	b) Bottom Left: Loewgren & Stolterman, 2004, p.25
	c) Top Right: Buxton, 2007, p.148, based on Pugh, 1990, p.75
	d) Bottom Right: Design Council, 2007b, p.10

	Figure 2.2: Map of design activities
	Figure 2.4 (left): Sketching vs. Prototyping
	Different levels of fidelity

	Figure 2.3: The Sketch to Prototype Continuum
	Buxton, 2007, p. 140

	Figure 2.5: Interaction design
	Graphic Design, Product Design, Graphical User Interface Design, Physical Interaction Design

	Figure 2.6: Interaction flow editor
	iRise Studio

	Figure 2.8: Integrated documentation
	iRise Studio

	Figure 2.10: Sketching
	DENIM

	Figure 2.7: Annotation during presentation
	iRise Studio

	Figure 2.9: Sketchy rendering
	Google SketchUp

	Figure 2.11: Progressive refinement
	DENIM

	Figure 2.12: Zoom levels
	DENIM

	Figure 2.13: Design-oriented API
	Processing

	Figure 2.15: Stage, actor, behavior
	Scratch

	Figure 2.17: Progr. by demonstration
	Exemplar

	Figure 2.14: Timeline
	Adobe Flash

	Figure 2.16: Visual progr. language
	Cycling74 Max

	Figure 2.18: Physical simulation
	Phun

	Figure 2.19: Transparent blueprint
	Adobe Dreamweaver

	Figure 2.21: Input-output box
	Arduino

	Figure 2.23: Integrated prototyping
	d.tools (Design view)

	Figure 2.20: Design view vs. implementation view
	Adobe Dreamweaver

	Figure 2.22: Integrated prototyping
	d.tools (Workflow)

	Figure 2.24: Integrated prototyping
	d.tools (Analysis view)

	Figure 2.25: Activity-centered design
	ActivityStudio

	Figure 2.26: Matrix of interaction design tools
	(Software tools only; research projects in light gray)

	Figure 3.1: Preview and object styles
	Adobe Illustrator

	Figure 3.2: Integrated online sharing
	Scratch

	Figure 3.3: Custom-made tools of a ceramic craftsman
	Photo by Cory Lum

	Figure 3.4: Tool aesthetics of different communities
	Processing vs. Eclipse (web site and software)

	Figure 4.1: Sketchbook fills the initial gap
	Figure 4.2: Showing a collection of assets
	Figure 4.3: Starting with a simple, informal story
	Figure 4.4: Adding a simple interaction
	Figure 4.5: A more detailed interaction scenario
	Figure 4.6: Enriching the story with context
	Figure 4.7: Reviewing the design history
	Figure 4.8: Presentation view with annotation
	Figure 4.9: Adding object-oriented knowledge about the world
	Figure 4.10: State-based programming of the interaction
	Figure 4.11: Enhanced interactive presentation
	Figure 5.2: A typical breadboard-based prototype
	Figure 5.1: Arduino micro-controller
	Photo by Nicholas Zambetti

	Figure 5.3: Stripboard (front & back)
	Wikimedia Commons

	Figure 5.4: PCB panel
	Figure 5.5: Fritzing fills part of the production gap
	Figure 5.6: How Fritzing works
	Illustration by Myriel Milicevic

	Figure 5.7: Arduino prototyping shield
	Photo by Limor Fried (ladyada)

	Figure 5.8: EAGLE (showing a PCB view)
	Cadsoft

	Figure 5.9: Sketch of the Fritzing GUI
	By Dirk van Ooosterbosch

	Figure 5.10: Using a photo as blueprint
	By Dirk van Ooosterbosch

	Figure 5.11: Browsing for the right part in EAGLE
	Cadsoft

	Figure 5.12: Schematic notation of a circuit
	Wikimedia Commons

	Figure 5.14: Integrated examples
	Fritzing Alpha

	Figure 5.14: Toy hacks can be documented in Fritzing
	Photo by Danja Vasiliev

	Figure 5.15: Informal annotation
	Fritzing Alpha

	Figure 5.16: Sketch of an online project documentation
	By Hendrik Gäbler

	Figure 5.17: Fritzing aesthetic
	By Dirk van Oosterbosch

	Figure 5.18: Fritzing icon and logo
	By Dirk v. Oosterbosch

	Figure 5.19: The first five Fritzing releases
	Figure 5.20: Fritzing kick-off workshop with experts
	Arduino co-inventor Tom Igoe speaking (Photo by Jochen Fuchs)

	Figure 5.21: Impressions from Fritzing workshops
	Upper right: One of the more complex student’s eketches
	Upper left: Marcus Paeschke etching the boards
	Lower left: An etched board
	Lower right: a happy student with a completely assembled Arduino shield

